Sickle Cell Anemia Its Epidemiology, Pathophysiology, Nutraceuticals Role: A Review
DOI:
https://doi.org/10.55544/jrasb.3.4.12Keywords:
Sickle cell anemia, Pathophysiology, Nutraceuticals, HerbsAbstract
The individual with the "SS" genotype possesses a deviant beta globin gene, resulting in the manifestation of sickle cell anemia, an inherited pathological condition. The severe symptoms of sickle cell disease are a result of a specific genetic mutation in the gene responsible for encoding the human β-globin subunit. This mutation leads to the substitution of valine for β 6 glutamic acid. The replacement of sickle cell hemoglobin (HbS) causes a significant decrease in its solubility when it is deoxygenated. The advancements in targeted molecular treatments have been driven by the significant advancements in our understanding of the biology of sickle cell disease (SCD) and its various repercussions since its discovery in 1910. Sickle cell disease (SCD) is a condition where the flow and lifespan of red blood cells are impacted by a mutated form of hemoglobin called hemoglobin S. This mutation occurs when a single amino acid in the β-globin chain is replaced, causing the hemoglobin to form polymers. During the early phases of treating sickle cell anemia, patients are commonly prescribed hydroxyurea, folic acid, amino acid supplements, penicillin prophylaxis, antimalarial prophylaxis, and blood transfusions to stabilize their hemoglobin level. They face significant expenses and hazards. However, there is a positive development: the investigation of medicinal plants for their ability to prevent sickling has yielded significant financial rewards. Laboratory experiments have demonstrated that this alternative therapy involving nutraceuticals can effectively reverse the process of sickling and also decrease the occurrence of crises.
Downloads
Metrics
References
Piel, F. B., Patil, A. P., Howes, R. E., Nyangiri, O. A., Gething, P. W., Dewi, M., ... & Hay, S. I. (2013). Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. The Lancet, 381(9861), 142-151.
Brousseau, D. C., A Panepinto, J., Nimmer, M., & Hoffmann, R. G. (2010). The number of people with sickle‐cell disease in the United States: national and state estimates. American journal of hematology, 85(1), 77-78.
Payne, A. B., Mehal, J. M., Chapman, C., Haberling, D. L., Richardson, L. C., Bean, C. J., & Hooper, W. C. (2020). Trends in sickle cell disease–related mortality in the United States, 1979 to 2017. Annals of emergency medicine, 76(3), S28-S36.
Cronin, E. K., Normand, C., Henthorn, J. S., Hickman, M., & Davies, S. C. (1998). Costing model for neonatal screening and diagnosis of haemoglobinopathies. Archives of Disease in Childhood-Fetal and Neonatal Edition, 79(3), F161-F167.
Aguilar Martinez, P., Angastiniotis, M., Eleftheriou, A., Gulbis, B., Manu Pereira, M. D. M., Petrova-Benedict, R., & Corrons, J. L. V. (2014). Haemoglobinopathies in Europe: health & migration policy perspectives. Orphanet journal of rare diseases, 9, 1-7.
Modell, B., Petrou, M., Layton, M., Slater, C., Ward, R. H. T., Rodeck, C., ... & Old, J. (1997). Audit of prenatal diagnosis for haemoglobin disorders in the United Kingdom: the first 20 years. BMJ, 315(7111), 779-784.
Cela, E., Bellón, J. M., de la Cruz, M., Beléndez, C., Berrueco, R., Ruiz, A., ... & SEHOP‐Hemoglobinopathies Study Group (Sociedad Española de Hematología y Oncología Pediátricas). (2017). National registry of hemoglobinopathies in Spain (REPHem). Pediatric blood & cancer, 64(7), e26322.
Inusa, B. P., & Colombatti, R. (2017). European migration crises: the role of national hemoglobinopathy registries in improving patient access to care.
Lindenau, J. D., Wagner, S. C., Castro, S. M. D., & Hutz, M. H. (2016). The effects of old and recent migration waves in the distribution of HBB* S globin gene haplotypes. Genetics and molecular biology, 39(4), 515-523.
Lobitz, S., Telfer, P., Cela, E., Allaf, B., Angastiniotis, M., Backman Johansson, C., ... & with the endorsement of EuroBloodNet, the European Reference Network in Rare Haematological Diseases. (2018). Newborn screening for sickle cell disease in Europe: recommendations from a Pan‐European Consensus Conference. British journal of haematology, 183(4), 648-660.
Grosse, R., Lukacs, Z., Cobos, P. N., Oyen, F., Ehmen, C., Muntau, B., ... & Noack, B. (2016). The prevalence of sickle cell disease and its implication for newborn screening in Germany (Hamburg metropolitan area). Pediatric blood & cancer, 63(1), 168-170.
Colombatti, R., Martella, M., Cattaneo, L., Viola, G., Cappellari, A., Bergamo, C., ... & Sainati, L. (2019). Results of a multicenter universal newborn screening program for sickle cell disease in Italy: a call to action. Pediatric blood & cancer, 66(5), e27657.
Ingram, V. M. (1956). A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature, 178(4537), 792-794.
Pauling, L., Itano, H. A., Singer, S. J., & Wells, I. C. (1949). Sickle cell anemia, a molecular disease. Science, 110(2865), 543-548.
Noguchi, C. T., Rodgers, G. P., Serjeant, G., & Schechter, A. N. (1988). Levels of fetal hemoglobin necessary for treatment of sickle cell disease. New England Journal of Medicine, 318(2), 96-99.
Brittenham, G. M., Schechter, A. N., & Noguchi, C. T. (1985). Hemoglobin S polymerization: primary determinant of the hemolytic and clinical severity of the sickling syndromes. Blood, 65(1), 183-189.
Ware, R. E., de Montalembert, M., Tshilolo, L., & Abboud, M. R. (2017). Sickle cell disease. The Lancet, 390(10091), 311-323.
Bennewitz, M. F., Jimenez, M. A., Vats, R., Tutuncuoglu, E., Jonassaint, J., Kato, G. J., ... & Sundd, P. (2017). Lung vaso-occlusion in sickle cell disease mediated by arteriolar neutrophil-platelet microemboli. JCI insight, 2(1).
Kato, G. J., Steinberg, M. H., & Gladwin, M. T. (2017). Intravascular hemolysis and the pathophysiology of sickle cell disease. The Journal of clinical investigation, 127(3), 750-760.
Gladwin, M. T., & Ofori-Acquah, S. F. (2014). Erythroid DAMPs drive inflammation in SCD. Blood, The Journal of the American Society of Hematology, 123(24), 3689-3690.
Keservani, R. K., Kesharwani, R. K., Sharma, A. K., Gautam, S. P., Verma, S. K., Bagchi, D., & Nair, S. (2017). Developing new functional food and nutraceutical products.
Fernandes, S. D., Narayana, R. C., & Narayanan, A. V. (2019). The emergence of India as a blossoming market for nutraceutical supplements: An overview. Trends in Food Science & Technology, 86, 579-585.
Mazza, A., Nicoletti, M., Lenti, S., Torin, G., Rigatelli, G., Pellizzato, M., & Fratter, A. (2021). Effectiveness and safety of novel nutraceutical formulation added to ezetimibe in statin-intolerant hypercholesterolemic subjects with moderate-to-high cardiovascular risk. Journal of medicinal food, 24(1), 59-66.
Colletti, A., & Cicero, A. F. (2021). Nutraceutical approach to chronic osteoarthritis: from molecular research to clinical evidence. International journal of molecular sciences, 22(23), 12920.
Da Costa, J. P. (2017). A current look at nutraceuticals–Key concepts and future prospects. Trends in Food Science & Technology, 62, 68-78.
Elkhalifa, A. E. O., Alshammari, E., Adnan, M., Alcantara, J. C., Awadelkareem, A. M., Eltoum, N. E., ... & Ashraf, S. A. (2021). Okra (Abelmoschus esculentus) as a potential dietary medicine with nutraceutical importance for sustainable health applications. Molecules, 26(3), 696.
Chauhan, B., Kumar, G., Kalam, N., & Ansari, S. H. (2013). Current concepts and prospects of herbal nutraceutical: A review. Journal of advanced pharmaceutical technology & research, 4(1), 4-8.
Puri, V., Nagpal, M., Singh, I., Singh, M., Dhingra, G. A., Huanbutta, K., Dheer, D., Sharma, A., & Sangnim, T. (2022). A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients, 14(21), 4637. https://doi.org/10.3390/nu14214637
Souyoul, S. A., Saussy, K. P., & Lupo, M. P. (2018). Nutraceuticals: A Review. Dermatology and therapy, 8(1), 5–16. https://doi.org/10.1007/s13555-018-0221-x
Sachdeva, V., Roy, A., & Bharadvaja, N. (2020). Current Prospects of Nutraceuticals: A Review. Current pharmaceutical biotechnology, 21(10), 884–896. https://doi.org/10.2174/1389201021666200130113441
Alli, L. A., & Okoh, M. P. (2016). Phyto-Medicine in gene (s) targeting future direction for sickle cell disease management. Hereditary Genet, 5(169), 2161-1041.
Anosike, C. A., Igboegwu, O. N., & Nwodo, O. F. C. (2019). Antioxidant properties and membrane stabilization effects of methanol extract of Mucuna pruriens leaves on normal and sickle erythrocytes. Journal of Traditional and Complementary Medicine, 9(4), 278-284.
Ashley-Koch, A., Yang, Q., & Olney, R. S. (2000). Sickle hemoglobin (Hb S) allele and sickle cell disease: a HuGE review. American journal of epidemiology, 151(9), 839-845.
Aslan, M., THORNLEY‐BROWN, D. E. N. Y. S. E., & Freeman, B. A. (2000). Reactive species in sickle cell disease. Annals of the New York Academy of Sciences, 899(1), 375-391.
Ayevbuomwan, M. E., Elekofehinti, O. O., Obuseh, F. A., & Omoregie, E. S. (2021). Antisickling potential of compounds derived from Detarium microcarpum (Fabaceae): in vitro and in silico studies. Advances in Traditional Medicine, 21, 725-737.
Barabino, G. A., Platt, M. O., & Kaul, D. K. (2010). Sickle cell biomechanics. Annual review of biomedical engineering, 12(1), 345-367.
Bongo, G., Inkoto, C., Masengo, C., Tshiama, C., Lengbiye, E., Djolu, R., ... & Ngbolua, K. N. (2017). Antisickling, antioxidant and antibacterial activities of Afromomum alboviolaceum (Ridley) K. Schum, Annona senegalensis Pers. and Mondia whitei (Hook. f.) Skeels. American Journal of Laboratory Medicine, 2(4), 52-59.
Bou-Fakhredin, R., De Franceschi, L., Motta, I., Cappellini, M. D., & Taher, A. T. (2022). Pharmacological induction of fetal hemoglobin in β-thalassemia and sickle cell disease: An updated perspective. Pharmaceuticals, 15(6), 753.
Brandow, A. M., Carroll, C. P., Creary, S., Edwards-Elliott, R., Glassberg, J., Hurley, R. W., ... & Lang, E. (2020). American Society of Hematology 2020 guidelines for sickle cell disease: management of acute and chronic pain. Blood advances, 4(12), 2656-2701.
Ali, M. A., Ahmad, A., Chaudry, H., Aiman, W., Aamir, S., Anwar, M. Y., & Khan, A. (2020). Efficacy and safety of recently approved drugs for sickle cell disease: a review of clinical trials. Experimental hematology, 92, 11-18.
Eaton, W. A., & Bunn, H. F. (2017). Treating sickle cell disease by targeting HbS polymerization. Blood, The Journal of the American Society of Hematology, 129(20), 2719-2726.
Darshana, T., Rees, D., & Premawardhena, A. (2021). Hydroxyurea and blood transfusion therapy for Sickle cell disease in South Asia: inconsistent treatment of a neglected disease. Orphanet Journal of Rare Diseases, 16, 1-12.
Ferreira de Matos, C., Comont, T., Castex, M. P., Lafaurie, M., Walter, O., Moulis, G., ... & Cougoul, P. (2022). Risk of vaso-occlusive episodes in patients with sickle cell disease exposed to systemic corticosteroids: a comprehensive review. Expert Review of Hematology, 15(12), 1045-1054.
Telen, M. J., Wun, T., McCavit, T. L., De Castro, L. M., Krishnamurti, L., Lanzkron, S., ... & Thackray, H. (2015). Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood, The Journal of the American Society of Hematology, 125(17), 2656-2664.
Doss, J. F., Jonassaint, J. C., Garrett, M. E., Ashley-Koch, A. E., Telen, M. J., & Chi, J. T. (2016). Phase 1 study of a sulforaphane-containing broccoli sprout homogenate for sickle cell disease. PloS one, 11(4), e0152895.
Chirico, E. N., & Pialoux, V. (2012). Role of oxidative stress in the pathogenesis of sickle cell disease. IUBMB life, 64(1), 72-80.
Dash, B. P., Archana, Y., Satapathy, N., & Naik, S. K. (2013). Search for antisickling agents from plants. Pharmacognosy reviews, 7(13), 53–60. https://doi.org/10.4103/0973-7847.112849
Mpiana, P. T., Mudogo, V., Tshibangu, D. S. T., Ngbolua, K. N., Shetonde, O. M., Mangwala, K. P., & Mavakala, B. K. (2007). In vitro Antisickling activity of anthocyanins extract of a Congolese plant: Alchornea cordifolia M. Arg.
Ibrahim, H., Sani, F. S., Danladi, B. H., & Ahmadu, A. A. (2007). Phytochemical and antisickling studies of the leaves of Hymenocardia acida Tul (Euphorbiaceae). Pakistan journal of biological sciences: PJBS, 10(5), 788-791.
Adesina, S. K., Olugbade, T. A., Akinwusi, D. D., & Bergenthal, D. (1997). Extractives from Zanthoxylum lemairie root and stem.
Adesina, S. K. (2005). The Nigerian Zanthoxylum; chemical and biological values. African Journal of Traditional, Complementary and Alternative Medicines, 2(3), 282-301.
Adewole, K. E. (2020). Nigerian antimalarial plants and their anticancer potential: A review. Journal of Integrative Medicine, 18(2), 92-113.
Ahmad, M. U., Rahman, M. A., Huq, E., & Chowdhury, R. (2003). Alkaloids of Zanthoxylum budrunga. Fitoterapia, 74(1-2), 191-193.
Ahsan, M., Haque, M. R., Hossain, M. B., Islam, S. N., Gray, A. I., & Hasan, C. M. (2014). Cytotoxic dimeric quinolone–terpene alkaloids from the root bark of Zanthoxylum rhetsa. Phytochemistry, 103, 8-12.
Edem, G., Sakpa, C., & Ezeuko, V. (2023). Exploring the scientific basis behind the therapeutic efficacy of Uvaria chamae: A major plus to alternative medicine. J. New Medical Innovations and Research, 4(6).
Ezéchiel, L. J., SENOU, M., Gloria, A. Y., TCHOGOU, P., DEHOU, R., MEDOATINSA, E., ... & Benin, R. (2022). Evaluation of the Anti-Sickle Cell Activity of Uvaria chamea P. Beauv. Roots Aqueous Extract. International Journal of Biology, 14(1), 1-1.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ajay Kumar, Shalini, Yuvraj, K. M. Srinandhinidevi, Pratiksha Shivaji Chapkanade, K Barakkath Nisha, Devesh Avinash Machhi, Shweta Sinha, Santosh Kumar S.R., Rapborlang Khongshei
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.