Mechanisms of PFAS Degradation in Thermal Destruction Processes

Authors

  • Saikumar Chalivendra Independent Researcher, USA.

DOI:

https://doi.org/10.55544/jrasb.2.3.39

Keywords:

PFAS, Thermal Destruction Process, Degradation, Chemicals

Abstract

Through this research, information on methods of PFAS degradation through thermal destruction processes and analysis of the efficiency of degradation by temperature and conditions in the atmosphere is provided. These experiments were carried out at different temperatures from 400°C to 1,200°C under both reducing and oxidizing setter gases. The findings suggest that temperature plays a big role in rates of degradation with oxidative conditions promoting destruction of PFAS. The results obtained showed that at temperatures of 900°C and above degradation efficiency was over 90% as well as low content of toxic compounds. The developed study suggests that oxidative thermal destruction at high temperatures can be a viable technique for the degradation of PFASs, but heat energy consumption and formation of by-products should be well controlled.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alam, D., Lee, S., Hong, J., Fletcher, D. F., McClure, D., Cook, D., ... & Kavanagh, J. M. (2023). Experimental investigations of Per-and Poly-fluoroalkyl substances (PFAS) degradation by non-thermal plasma in aqueous solutions. Journal of Environmental Chemical Engineering, 11(6), 111588. https://doi.org/10.1016/j.jece.2023.111588

Cao, H., Zhang, W., Wang, C., & Liang, Y. (2020). Sonochemical degradation of poly-and perfluoroalkyl substances–a review. Ultrasonics Sonochemistry, 69, 105245. https://doi.org/10.1016/j.ultsonch.2020.105245

Challa Sasi, P. (2022). Thermal Stability And Decomposition Of Per-And Polyfluoroalkyl Substances (PFAS) Using Granular Activated Carbon And Other Porous Materials. https://commons.und.edu/theses/4329

DiStefano, R., Feliciano, T., Mimna, R. A., Redding, A. M., & Matthis, J. (2022). Thermal destruction of PFAS during full‐scale reactivation of PFAS‐laden granular activated carbon. Remediation Journal, 32(4), 231-238. https://doi.org/10.1002/rem.21735

Horst, J., McDonough, J., Ross, I., & Houtz, E. (2020). Understanding and managing the potential by‐products of PFAS destruction. Groundwater Monitoring & Remediation, 40(2), 17-27. https://cswab.org/wp-content/uploads/2020/09/Understanding-and-Managing-the-Potential-By-Products-of-PFAS-Destruction.pdf

Kumar, R., Dada, T. K., Whelan, A., Cannon, P., Sheehan, M., Reeves, L., & Antunes, E. (2023). Microbial and thermal treatment techniques for degradation of PFAS in biosolids: A focus on degradation mechanisms and pathways. Journal of Hazardous Materials, 452, 131212. https://doi.org/10.1016/j.jhazmat.2023.131212

Meegoda, J. N., Bezerra de Souza, B., Casarini, M. M., & Kewalramani, J. A. (2022). A review of PFAS destruction technologies. International journal of environmental research and public health, 19(24), 16397. https://doi.org/10.3390/ijerph192416397

Vargette, L. D., De Coensel, N., De Ras, K., Van de Vijver, R., Voorspoels, S., & Van Geem, K. M. (2023). Prospects of complete mineralization of per-and polyfluoroalkyl substances by thermal destruction methods. Current Opinion in Chemical Engineering, 42, 100954. https://doi.org/10.1016/j.coche.2023.100954

Verma, S., Lee, T., Sahle-Demessie, E., Ateia, M., & Nadagouda, M. N. (2023). Recent advances on PFAS degradation via thermal and nonthermal methods. Chemical engineering journal advances, 13, 100421. https://doi.org/10.1016/j.ceja.2022.100421

Winchell, L. J., Ross, J. J., Wells, M. J., Fonoll, X., Norton Jr, J. W., & Bell, K. Y. (2021). Per‐and polyfluoroalkyl substances thermal destruction at water resource recovery facilities: A state of the science review. Water Environment Research, 93(6), 826-843. https://doi.org/10.1002/wer.1483

Xiao, F., Challa Sasi, P., Alinezhad, A., Sun, R., & Abdulmalik Ali, M. (2023). Thermal phase transition and rapid degradation of forever chemicals (PFAS) in spent media using induction heating. ACS Es&t Engineering, 3(9), 1370-1380. https://pubs.acs.org/doi/full/10.1021/acsestengg.3c00114

Xiao, F., Sasi, P. C., Yao, B., Kubátová, A., Golovko, S. A., Golovko, M. Y., & Soli, D. (2021). Thermal decomposition of PFAS: Response to comment on “thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon”. Environmental Science & Technology Letters, 8(4), 364-365. https://pubs.acs.org/doi/10.1021/acs.estlett.1c00061

Downloads

Published

2023-06-30

How to Cite

Chalivendra, S. (2023). Mechanisms of PFAS Degradation in Thermal Destruction Processes. Journal for Research in Applied Sciences and Biotechnology, 2(3), 317–323. https://doi.org/10.55544/jrasb.2.3.39

Issue

Section

Articles