Sustainable Green Synthesis, Characterization and Anti-Microbial Testing of Cu-Based Metal-Organic Framework (MOF)/TiO2 Nanocomposites Derived from Cinnamomum Verum Bark

Authors

  • Rohini Sumitra Rajdatta Kadam Department of Chemistry, Siddhartha College of Arts, Commerce and Science, Mumbai-400023, INDIA.
  • Deepashree D. Kamble Associate Professor, Department of Chemistry, Siddhartha College of Arts, Commerce and Science, Mumbai-400023, INDIA.
  • Alisha K. Khan Assistant Professor, Department of Physics, Kankavli College, Kankavli, M. S.- 416602, INDIA.
  • Suresh Digambar Huse Assistant Professor, Department of Physics, Kankavli College, Kankavli, M. S.- 416602, INDIA.
  • Shamrao Tanaji Disale Department of Chemistry, Siddhartha College of Arts, Commerce and Science, Mumbai-400023, INDIA.
  • Nandakishor S. Chandan Assistant Professor, Department of Physics, Kankavli College, Kankavli, M. S.- 416602, INDIA.

DOI:

https://doi.org/10.55544/jrasb.4.2.3

Keywords:

Marble industry, soil contamination, heavy metals, pesticide interactions, environmental impact, soil remediation

Abstract

This research work is aimed at green synthesis with sustainability towards the production of copper (Cu)-Based Metal Organic Framework (MOF) and their doping in titanium dioxide (TiO₂) nanoparticles synthesized using a natural reductant and stabilizer, Cinnamomum verum (C. verum) bark extract. It is an eco-friendly synthesis technique because the bioactive compounds such as flavonoids and polyphenols present in C. verum help reduce and stabilize metal ions, thus replacing toxic chemicals. The synthesized Cu-doped TiO₂ nanocomposites are found to absorb increased visible light owing to the reduced bandgap from copper doping, as observed by UV-Vis Diffuse Reflectance Spectroscopy (UV-DRS). The scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis of the synthesized nanocomposites indicates that the distribution of Cu in the TiO₂ matrix is uniform, which offers structural stability and functional efficacy. Well-diffusion experiments on antimicrobial studies reveal that the nanocomposites produced by this process have excellent antimicrobial activity, especially towards Staphylococcus aureus. This is attributed to the photoinduced generation of ROS, which can break cell walls and interfere with microbial cell metabolism. The synthesis process for this Cu-TiO2 nanocomposite is totally in compliance with green chemistry principles and produces nanocomposites having strong antimicrobial and photocatalytic action. These results outline the grand potential of green methods-prepared Cu-doped TiO₂ nanocomposites to be used in antimicrobial coatings, environmental remediation, and much more - opening a promising route towards sustainable nanotechnology development.

Downloads

Download data is not yet available.

References

Ashraf, S. A., Siddiqui, A. J., Elkhalifa, A. E. O., Khan, M. I., Patel, M., Alreshidi, M., Moin, A., Singh, R., Snoussi, M., & Adnan, M. (2021). Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Science of the Total Environment, 768, 144990. https://doi.org/10.1016/j.scitotenv.2021.144990

He, Q.-L., Jia, B.-X., Wang, Y.-K., Qin, M., Xu, W.-B., Zhang, Z., Feng, Y.-F., & Zhou, B. (2023). Copper ion based metal–organic framework nanomaterials with roughness enhanced protein adhesion for high-efficiency hemoglobin separation. New Journal of Chemistry, 47(15), 7245–7252. https://doi.org/10.1039/d2nj06115e

Yu, Z., Lepoitevin, M., & Serre, C. (2024). Iron‐MOFs for Biomedical Applications. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202402630

Prakash, J., Samriti, Kumar, A., Dai, H., Janegitz, B. C., Krishnan, V., Swart, H. C., & Sun, S. (2021). Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications. Materials Today Sustainability, 13, 100066–100066. https://doi.org/10.1016/j.mtsust.2021.100066

Dar, A., Rehman, R., Zaheer, W., Shafique, U., & Anwar, J. (2021). Synthesis and Characterization of ZnO-Nanocomposites by Utilizing Aloe Vera Leaf Gel and Extract of Terminalia arjuna Nuts and Exploring Their Antibacterial Potency. Journal of Chemistry, 2021, e9448894. https://doi.org/10.1155/2021/9448894

Igarashi, I., Amany Magdy Beshbishy, Azirwan Guswanto, Arifin Budiman Nugraha, Tserendorj Munkhjargal, Abdel-Daim, M. M., & Mosqueda, J. (2020). Phytochemical Characterization and Chemotherapeutic Potential of Cinnamomum verum Extracts on the Multiplication of Protozoan Parasites In Vitro and In Vivo. Molecules, 25(4), 996–996. https://doi.org/10.3390/molecules25040996

Sharifi-Rad, J., Dey, A., Koirala, N., Shaheen, S., El Omari, N., Salehi, B., Goloshvili, T., Cirone Silva, N. C., Bouyahya, A., Vitalini, S., Varoni, E. M., Martorell, M., Abdolshahi, A., Docea, A. O., Iriti, M., Calina, D., Les, F., López, V., & Caruntu, C. (2021). Cinnamomum Species: Bridging Phytochemistry Knowledge, Pharmacological Properties and Toxicological Safety for Health Benefits. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.600139

Tiwari, S., Verma, S. K., Bhagat, P., Yadav, S., Sharma, R., Aseri, G. K., Sohal, J. S., Sharma, D., Dwivedi, U. K., Singh, R., Singh, D., & Khare, N. (2021). An overview of the phytosynthesis of various metal nanoparticles. 3 Biotech, 11(11). https://doi.org/10.1007/s13205-021-03014-0

Joshi, A., Sharma, A., Rakesh Kumar Bachheti, Husen, A., & Mishra, V. (2019). Plant-Mediated Synthesis of Copper Oxide Nanoparticles and Their Biological Applications. 221–237. https://doi.org/10.1007/978-3-030-05569-1_8

Mohammad Zaki Ahmad, Alasiri, A., Ahmad, J., Alqahtani, A. A., Abdullah, M. M., Abdel-Wahab, B. A., Pathak, K., Riya Saikia, Das, A., Sarma, H., & Seham Abdullah Alzahrani. (2022). Green Synthesis of Titanium Dioxide Nanoparticles Using Ocimum sanctum Leaf Extract: In Vitro Characterization and Its Healing Efficacy in Diabetic Wounds. Molecules, 27(22), 7712–7712. https://doi.org/10.3390/molecules27227712

Thukkaram, M., Vaidulych, M., Kylián, O., Rigole, P., Aliakbarshirazi, S., Asadian, M., Nikiforov, A., Biederman, H., Coenye, T., Du Laing, G., Morent, R., Van Tongel, A., De Wilde, L., Verbeken, K., & De Geyter, N. (2021). Biological activity and antimicrobial property of Cu/a-C:H nanocomposites and nanolayered coatings on titanium substrates. Materials Science and Engineering: C, 119, 111513. https://doi.org/10.1016/j.msec.2020.111513

Leyland, N. S., Podporska-Carroll, J., Browne, J., Hinder, S. J., Quilty, B., & Pillai, S. C. (2016). Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Scientific Reports, 6. https://doi.org/10.1038/srep24770

Huston, M., DeBella, M., DiBella, M., & Gupta, A. (2021). Green Synthesis of Nanomaterials. Nanomaterials, 11(8), 2130. https://doi.org/10.3390/nano11082130

Althomali, R. H., Alamry, K. A., Hussein, M. A., Khan, A., & Alosaimi, A. M. (2021). A green nanocomposite based modified cellulose/TiO2/Cinnamon bark for the reduction of toxic organic compounds using spectrophotometric technique. Journal of Materials Research and Technology, 12, 947–966. https://doi.org/10.1016/j.jmrt.2021.03.002

Du, T., Chen, S., Zhang, J., Li, T., Li, P., Liu, J., Du, X., & Wang, S. (2020). Antibacterial Activity of Manganese Dioxide Nanosheets by ROS-Mediated Pathways and Destroying Membrane Integrity. Nanomaterials, 10(8), 1545. https://doi.org/10.3390/nano10081545

Lia-Mara Ditu, Razvan Bucuresteanu, Ionita, M., Andreea Neacsu, & Ioan Calinescu. (2024). Antimicrobial and Antibiofilm Properties of Nanocomposite Surfaces with Biomedical Applications. IntechOpen EBooks. https://doi.org/10.5772/intechopen.115120

Harun, N. H., Mydin, R. B. S. M. N., Sreekantan, S., Saharudin, K. A., Basiron, N., Aris, F., Wan Mohd Zain, W. N., & Seeni, A. (2020). Bactericidal Capacity of a Heterogeneous TiO2/ZnO Nanocomposite against Multidrug-Resistant and Non-Multidrug-Resistant Bacterial Strains Associated with Nosocomial Infections. ACS Omega, 5(21), 12027–12034. https://doi.org/10.1021/acsomega.0c00213

Shakti Katiyar, & Rajesh Katiyar. (2023). A comprehensive review on synthesis and application of nanocomposites for adsorption of chromium: status and future prospective. Applied Water Science, 14(1). https://doi.org/10.1007/s13201-023-02062-6

Pedroza-Herrera, G., Medina-Ramírez, I. E., Lozano-Álvarez, J. A., & Rodil, S. E. (2020). Evaluation of the Photocatalytic Activity of Copper Doped TiO2 nanoparticles for the Purification and/or Disinfection of Industrial Effluents. Catalysis Today, 341, 37–48. https://doi.org/10.1016/j.cattod.2018.09.017

Ranga Rao, G., & Sahu, H. R. (2001). XRD and UV-Vis diffuse reflectance analysis of CeO2-ZrO2 solid solutions synthesized by combustion method. Journal of Chemical Sciences, 113(5-6), 651–658. https://doi.org/10.1007/bf02708797

Ben Ali, M., Nasser, R., Alshahrani, S. M., Al-Shamiri, H. A. S., Elgammal, B., & Elhouichet, H. (2021). Synthesis, characterization, and visible-light photocatalytic activity of transition metals doped ZTO nanoparticles. Ceramics International, 47(23), 32882–32890. https://doi.org/10.1016/j.ceramint.2021.08.185

Khlifi, N., Zerrouki, C., Fourati, N., Guermazi, H., & Guermazi, S. (2024). Investigation of structural and optical properties of TM-doped CuO NPs: Correlation with their photocatalytic efficiency in sunlight-induced pollutant degradation. Measurement, 237, 115209. https://doi.org/10.1016/j.measurement.2024.115209

Arora, I., Chawla, H., Chandra, A., Sagadevan, S., & Garg, S. (2022). Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorganic Chemistry Communications, 143, 109700. https://doi.org/10.1016/j.inoche.2022.109700

Kumar, R., & Sharma, T. (2018). Stability and rheological properties of nanofluids stabilized by SiO2 nanoparticles and SiO2-TiO2 nanocomposites for oilfield applications. 539, 171–183. https://doi.org/10.1016/j.colsurfa.2017.12.028

Liyanaarachchi, H., Thambiliyagodage, C., Liyanaarachchi, C., & Samarakoon, U. (2023). Efficient photocatalysis of Cu doped TiO2/g-C3N4 for the photodegradation of methylene blue. Arabian Journal of Chemistry, 16(6), 104749. https://doi.org/10.1016/j.arabjc.2023.104749

Aguilar-Ferrer, D., Szewczyk, J., & Coy, E. (2021). Recent developments in polydopamine-based photocatalytic nanocomposites for energy production: Physico-chemical properties and perspectives. Catalysis Today. https://doi.org/10.1016/j.cattod.2021.08.016

Torres-Ramos, M. I., Martín-Camacho, U. J., González, J. L., Yañez-Acosta, M. F., Becerra-Solano, L., Gutiérrez-Mercado, Y. K., Macias-Carballo, M., Gómez, C. M., González-Vargas, O. A., Rivera-Mayorga, J. A., & Pérez-Larios, A. (2022). A Study of Zn-Ca Nanocomposites and Their Antibacterial Properties. International Journal of Molecular Sciences, 23(13), 7258. https://doi.org/10.3390/ijms23137258

Yitagesu, G. B., Leku, D. T., & Workneh, G. A. (2023). Green Synthesis of TiO2 Using Impatiens rothii Hook.f. Leaf Extract for Efficient Removal of Methylene Blue Dye. ACS Omega, 8(46), 43999–44012. https://doi.org/10.1021/acsomega.3c06142

Jafarzadeh, S., Nooshkam, M., Zargar, M., Garavand, F., Ghosh, S., Hadidi, M., & Forough, M. (2023). Green synthesis of nanomaterials for smart biopolymer packaging: challenges and outlooks. Journal of Nanostructure in Chemistry. https://doi.org/10.1007/s40097-023-00527-3

Downloads

Published

2025-04-12

How to Cite

Kadam, R. S. R., Kamble, D. D., Khan, A. K., Huse, S. D., Disale, S. T., & Chandan, N. S. (2025). Sustainable Green Synthesis, Characterization and Anti-Microbial Testing of Cu-Based Metal-Organic Framework (MOF)/TiO2 Nanocomposites Derived from Cinnamomum Verum Bark. Journal for Research in Applied Sciences and Biotechnology, 4(2), 18–26. https://doi.org/10.55544/jrasb.4.2.3

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.