A Review: Role of Bacterial Exopolysaccharides in Biofilm Formation

Authors

  • Ishpreet Kaur Department of Biotechnology, IIS (Deemed to be University), Jaipur, INDIA.

DOI:

https://doi.org/10.55544/jrasb.1.3.29

Keywords:

Bioremediation, Accumulation, Antibiotics, Biofilm, Planktonic

Abstract

Biofilms are a group of microbial cells that are attached to various abiotic or living surfaces and submerged in an extracellular polymeric substance produced by these microorganisms. Biofilm-producing bacteria are more resistant to antibiotics compared to planktonic cells and that is why nowadays, for the removal of pharmaceuticals from the environment biofilms are used. The presence of various substances in water sources is a major concern these days because it was observed that continuous accumulation of these active compounds in water causes harm to various aquatic organisms. Therefore, removal of these antibiotics from water bodies is compulsory and for this biofilm-producing bacteria are used in various studies. This review aims to determine that compared to planktonic cells, how bacterial biofilms are more effective for bioremediation of antibiotics from the environment.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Foster, J.W., & Slonczewski, J.L. (2017). Microbiology- An evolving science 4thEdn, W.W. Norton, and company, New York City.

Anderson, A. J., Haywood, G. W., & Dawes, E. A. (1990). Biosynthesis and composition of bacterial poly (hydroxyalkanoates). International journal of biological macromolecules, 12(2), 102-105.

Rehm, B. H. A., & Valla, S. (1997). Bacterial alginates: biosynthesis and applications. Applied microbiology and biotechnology, 48(3), 281-288.

Cerning, J. (1995). Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Le lait, 75(4-5), 463-472.

Sutherland, I. W. (1972). Bacterial exopolysaccharides. Advances in microbial physiology, 8, 143-213.

Ruas-Madiedo, P., Hugenholtz, J., & Zoon, P. (2002). An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International dairy journal, 12(2-3), 163-171.

d’Abzac, P., Bordas, F., Joussein, E., Hullebusch, E. V., Lens, P. N., & Guibaud, G. (2010). Characterization of the mineral fraction associated to extracellular polymeric substances (EPS) in anaerobic granular sludges. Environmental science & technology, 44(1), 412-418.

Chopra, S., & Kumar, D. (2020). Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon, 6(6), e04087.

Gonzalez-Rey, M., & Bebianno, M. J. (2012). Does non-steroidal anti-inflammatory (NSAID) ibuprofen induce antioxidant stress and endocrine disruption in mussel Mytilus galloprovincialis?. Environmental Toxicology and Pharmacology, 33(2), 361-371.

Okada, M., Soda, Y., Hayashi, F., Doi, T., Suzuki, J., Miura, K., & Kozai, K. (2005). Longitudinal study of dental caries incidence associated with Streptococcus mutans and Streptococcus sobrinus in pre-school children. Journal of medical microbiology, 54(7), 661-665.

Rajan, S., & Saiman, L. (2002, March). Pulmonary infections in patients with cystic fibrosis. In Seminars in respiratory infections (Vol. 17, No. 1, pp. 47-56).

Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284(5418), 1318-1322.

McKenney, J. K., Amin, M. B., Srigley, J. R., Jimenez, R. E., Ro, J. Y., Grignon, D. J., & Young, R. H. (2004). Basal cell proliferations of the prostate other than usual basal cell hyperplasia: a clinicopathologic study of 23 cases, including four carcinomas, with a proposed classification. The American journal of surgical pathology, 28(10), 1289-1298.

Baselga, R., Albizu, I., & Amorena, B. (1994). Staphylococcus aureus capsule and slime as virulence factors in ruminant mastitis. A review. Veterinary microbiology, 39(3-4), 195-204.

Li, H. P., Hou, W. G., & Zhang, Y. Z. (2011). Rheological properties of aqueous solution of new exopolysaccharide secreted by a deep-sea mesophilic bacterium. Carbohydrate polymers, 84(3), 1117-1125.

De Vuyst, L., & Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS microbiology reviews, 23(2), 153-177.

Schmid, J., Sieber, V., & Rehm, B. (2015). Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Frontiers in microbiology, 6, 496.

Hussain, A., Zia, K. M., Tabasum, S., Noreen, A., Ali, M., Iqbal, R., & Zuber, M. (2017). Blends and composites of exopolysaccharides; properties and applications: A review. International journal of biological macromolecules, 94, 10-27.

Ahmed, R. Z., Siddiqui, K., Arman, M., & Ahmed, N. (2012). Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydrate Polymers, 90(1), 441-446.

Singh, J. K., Adams, F. G., & Brown, M. H. (2019). Diversity and function of capsular polysaccharide in Acinetobacter baumannii. Frontiers in Microbiology, 9, 3301.

Hubbard, C., McNamara, J. T., Azumaya, C., Patel, M. S., & Zimmer, J. (2012). The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan. Journal of molecular biology, 418(1-2), 21-31.

Parikh, A. and Madamwar, D. (2006). Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour. Technol. 97: 1822-1827.

Sarkar, A., Lehto, S. M., Harty, S., Dinan, T. G., Cryan, J. F., & Burnet, P. W. (2016). Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends in neurosciences, 39(11), 763-781.

Appanna, V. D., Finn, H., & Pierre, M. S. (1995). Exocellular phosphatidylethanolamine production and multiple-metal tolerance in Pseudomonas fluorescens. FEMS Microbiology letters, 131(1), 53-56.

Decho, A. W. (2000). Microbial biofilms in intertidal systems: an overview. Continental shelf research, 20(10-11), 1257-1273.

Flemming, H. C., & Wingender, J. (2001). Relevance of microbial extracellular polymeric substances (EPSs)-Part I: Structural and ecological aspects. Water science and technology, 43(6), 1-8.

Gao, M., Yang, M., Li, H., Wang, Y., & Pan, F. (2004). Nitrification and sludge characteristics in a submerged membrane bioreactor on synthetic inorganic wastewater. Desalination, 170(2), 177-185.

Frølund, B., Palmgren, R., Keiding, K., & Nielsen, P. H. (1996). Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water research, 30(8), 1749-1758.

Jahn, A., Griebe, T., & Nielsen, P. H. (1999). Composition of Pseudomonas putida biofilms: accumulation of protein in the biofilm matrix. Biofouling, 14(1), 49-57.

d’Abzac, P., Bordas, F., Joussein, E., Hullebusch, E. V., Lens, P. N., & Guibaud, G. (2010). Characterization of the mineral fraction associated to extracellular polymeric substances (EPS) in anaerobic granular sludges. Environmental science & technology, 44(1), 412-418.

Chandra, J., & Mukherjee, P. K. (2015). Candida biofilms: development, architecture, and resistance. Microbiology spectrum, 3(4), 3-4.

Singla, S., Harjai, K., & Chhibber, S. (2014). Artificial Klebsiella pneumoniae biofilm model mimicking in vivo system: altered morphological characteristics and antibiotic resistance. The Journal of Antibiotics, 67(4), 305-309.

Triebskorn, R., Casper, H., Heyd, A., Eikemper, R., Köhler, H. R., & Schwaiger, J. (2004). Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquatic toxicology, 68(2), 151-166.

Nassef, M., Matsumoto, S., Seki, M., Khalil, F., Kang, I. J., Shimasaki, Y., ... & Honjo, T. (2010). Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese medaka fish (Oryzias latipes). Chemosphere, 80(9), 1095-1100.

Vieno, N., & Sillanpää, M. (2014). Fate of diclofenac in municipal wastewater treatment plant—A review. Environment international, 69, 28-39.

Zupanc, M., Kosjek, T., Petkovšek, M., Dular, M., Kompare, B., Širok, B., ... & Heath, E. (2013). Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrasonics sonochemistry, 20(4), 1104-1112.

Tang, K., Ooi, G. T., Litty, K., Sundmark, K., Kaarsholm, K. M., Sund, C., ... & Andersen, H. R. (2017). Removal of pharmaceuticals in conventionally treated wastewater by a polishing moving bed biofilm reactor (MBBR) with intermittent feeding. Bioresource Technology, 236, 77-86.

Onesios, K. M., & Bouwer, E. J. (2012). Biological removal of pharmaceuticals and personal care products during laboratory soil aquifer treatment simulation with different primary substrate concentrations. Water research, 46(7), 2365-2375.

Casas, M. E., Chhetri, R. K., Ooi, G., Hansen, K. M., Litty, K., Christensson, M., ... & Bester, K. (2015). Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR). Water research, 83, 293-302.

Pieper, C., Risse, D., Schmidt, B., Braun, B., Szewzyk, U., & Rotard, W. (2010). Investigation of the microbial degradation of phenazone-type drugs and their metabolites by natural biofilms derived from river water using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Water research, 44(15), 4559-4569.

Edwards, S. J., & Kjellerup, B. V. (2013). Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Applied microbiology and biotechnology, 97(23), 9909-9921.

Downloads

Published

2022-08-31

How to Cite

Kaur, I. (2022). A Review: Role of Bacterial Exopolysaccharides in Biofilm Formation. Journal for Research in Applied Sciences and Biotechnology, 1(3), 222–228. https://doi.org/10.55544/jrasb.1.3.29