Review on Surface Elements and Bacterial Biofilms in Plant-Bacterial Associations

Authors

  • Parwiz Niazi Department of Biology, Faculty of Education, Kandahar University, Kandahar, AFGHANISTAN and Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, TURKEY.
  • Abdul Wahid Monib Department of Biology, Faculty of Education, Kandahar University, Kandahar, AFGHANISTAN and School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, INDIA.
  • Hamidullah Ozturk Department of Agronomy, Faculty of Agriculture, Faryab University, Faryab, AFGHANISTAN.
  • Mujibullah Mansoor Department of Horticulture, Faculty of Agriculture, EGE University, Izmir, TURKEY.
  • Azizaqa Azizi Department of Biology, Faculty of Education, Parwan University, Parwan, AFGHANISTAN.
  • Mohammad Hassan Hassand Department of Biology, Faculty of Education, Kandahar University, Kandahar, AFGHANISTAN.

DOI:

https://doi.org/10.55544/jrasb.2.1.30

Keywords:

Biofilms, Autoaggregation, Plant bacteria, Surface compounds, Exopolymeric compounds

Abstract

In recent years, there has been increasing interest in the function of bacterial surface elements and functional signals in biofilm formation. Plant-associated bacteria can significantly affect the health and productivity of a plant because they are found in many different areas of the plant, including roots, transport channels, stems, and leaves. The management of these compounds by plants is still unknown, although biofilm production on plants is associated with both symbiotic and pathogenic responses. While some of the bacteria found in biofilm matrices trigger pathogenesis, others can promote plant thriving and serve as biocontrol agents for phytopathogens. This detailed review discusses in depth the various elements and methods involved in the production of bacterial biofilms on plant surfaces and their attachment, as well as the relationship between these factors and bacterial activity and survival.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ahmad, I., Khan, M. S., Altaf, M. M., Qais, F. A., Ansari, F. A., & Rumbaugh, K. P. (2017). Biofilms: an overview of their significance in plant and soil health. Biofilms in plant and soil health, 1-25.

Adak, A., Prasanna, R., Babu, S., Bidyarani, N., Verma, S., Pal, M., & Nain, L. (2016). Micronutrient enrichment mediated by plant-microbe interactions and rice cultivation practices. Journal of Plant Nutrition, 39(9), 1216-1232.

Anburajan, P., Kim, Y., Rice, S. A., & Oh, H. S. (2021). Bacterial signaling and signal responses as key factors in water and wastewater treatment. Journal of Water Process Engineering, 44, 102434.

Avalos, A. P., Fernández, R. L., & Pérez, D. Z. (2020). Validación de la escala de incapacidad por dolor lumbar de Oswestry, en paciente con dolor crónico de la espalda. Cienfuegos, 2017-2018. Rehabilitación, 54(1), 25-30.

Bakker, A. B., & Sanz-Vergel, A. I. (2013). Weekly work engagement and flourishing: The role of hindrance and challenge job demands. Journal of Vocational Behavior, 83(3), 397-409.

Beattie, G. A. (2006). Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. Plant-associated bacteria, 1-56.

Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied microbiology and biotechnology, 84, 11-18.

Berlec, A. (2012). Novel techniques and findings in the study of plant microbiota: search for plant probiotics. Plant science, 193, 96-102.

Bogino, P. C., de las Mercedes Oliva, M., Sorroche, F. G., & Giordano, W. (2013). The role of bacterial biofilms and surface components in plant-bacterial associations. International journal of molecular sciences, 14(8), 15838-15859.

Brewin, N. J. (2004). Plant cell wall remodelling in the Rhizobium–legume symbiosis. Critical Reviews in Plant Sciences, 23(4), 293-316.

Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F., & Maity, A. (2001). Regulation of glut1 mRNA by hypoxia-inducible factor-1: interaction between H-ras and hypoxia. Journal of Biological Chemistry, 276(12), 9519-9525.

Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. (2008). Dynamical outcomes of planet-planet scattering. The Astrophysical Journal, 686(1), 580.

Burger, M., Woods, R. G., McCarthy, C., & Beacham, I. R. (2000). Temperature regulation of protease in Pseudomonas fluorescens LS107d2 by an ECF sigma factor and a transmembrane activator. Microbiology, 146(12), 3149-3155.

D'aes, J., De Maeyer, K., Pauwelyn, E., & Höfte, M. (2010). Biosurfactants in plant–Pseudomonas interactions and their importance to biocontrol. Environmental microbiology reports, 2(3), 359-372.

Danhorn, T., & Fuqua, C. (2007). Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol., 61, 401-422.

Friedlander, R. S., Vlamakis, H., Kim, P., Khan, M., Kolter, R., & Aizenberg, J. (2013). Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proceedings of the National Academy of Sciences, 110(14), 5624-5629.

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., & Turner, S. (2009). Real-time DNA sequencing from single polymerase molecules. Science, 323(5910), 133-138.

Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563-575.

Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature reviews microbiology, 8(9), 623-633.

Felix, G., Duran, J. D., Volko, S., & Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 18(3), 265-276.

Frey‐Klett, P., Garbaye, J., & Tarkka, M. (2007). The mycorrhiza helper bacteria revisited. New phytologist, 176(1), 22-36.

Foster, K. R., & Schwan, H. P. (2019). Dielectric properties of tissues. CRC handbook of biological effects of electromagnetic fields, 27-96.

Giaouris, E., Heir, E., Desvaux, M., Hébraud, M., Møretrø, T., Langsrud, S., & Simões, M. (2015). Intra-and inter-species interactions within biofilms of important foodborne bacterial pathogens. Frontiers in microbiology, 6, 841.

Gilbert, P., Maira-Litran, T., McBain, A. J., Rickard, A. H., & Whyte, F. W. (2002). The physiology and collective recalcitrance of microbial biofilm communities.

Goodman, S. H., Rouse, M. H., Connell, A. M., Broth, M. R., Hall, C. M., & Heyward, D. (2011). Maternal depression and child psychopathology: A meta-analytic review. Clinical child and family psychology review, 14, 1-27.

Güvener, Z. T., & Harwood, C. S. (2007). Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic‐di‐GMP in response to growth on surfaces. Molecular microbiology, 66(6), 1459-1473.

Habimana, O., Semião, A. J. C., & Casey, E. (2014). The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes. Journal of Membrane Science, 454, 82-96.

Hartmann, A., & Schikora, A. (2012). Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. Journal of chemical ecology, 38, 704-713.

Hashem, A., Tabassum, B., & Abd_Allah, E. F. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi journal of biological sciences, 26(6), 1291-1297.

Herkert, P. F., Amatuzzi, R. F., Alves, L. R., & Rodrigues, M. L. (2019). Extracellular vesicles as vehicles for the delivery of biologically active fungal molecules. Current Protein and Peptide Science, 20(10), 1027-1036.

Hori, K., & Matsumoto, S. (2010). Bacterial adhesion: From mechanism to control. Biochemical Engineering Journal, 48(3), 424-434.

Hultqvist, L. D., Givskov, M., & Tolker-Nielsen, T. (2015). Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. Journal of molecular biology, 427(23), 3628-3645.

Ismail, A. S., Valastyan, J. S., & Bassler, B. L. (2016). A host-produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host & Microbe, 19(4), 470-480.

Jeong, J., Kang, H. M., Lee, E. K., Song, B. M., Kwon, Y. K., Kim, H. R., ... & Lee, Y. J. (2014). Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014. Veterinary microbiology, 173(3-4), 249-257.

Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Azarova, T., Makarova, N., & Lugtenberg, B. (2006). Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Molecular Plant-Microbe Interactions, 19(3), 250-256.

Kaplan, J. Á. (2010). Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. Journal of dental research, 89(3), 205-218.

Karygianni, L., Ren, Z., Koo, H., & Thurnheer, T. (2020). Biofilm matrixome: extracellular components in structured microbial communities. Trends in Microbiology, 28(8), 668-681.

Kasim, W. A., Gaafar, R. M., Abou-Ali, R. M., Omar, M. N., & Hewait, H. M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences, 61(2), 217-227.

Kim, K. H., Kabir, E., & Jahan, S. A. (2016). A review on the distribution of Hg in the environment and its human health impacts. Journal of hazardous materials, 306, 376-385.

Kolter, R., & Greenberg, E. P. (2006). The superficial life of microbes. Nature, 441(7091), 300-302.

Lebeis, Sarah L., Sur Herrera Paredes, Derek S. Lundberg, Natalie Breakfield, Jase Gehring, Meredith McDonald, Stephanie Malfatti et al. "Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa." Science 349, no. 6250 (2015): 860-864.

Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual review of microbiology, 63, 541-556.

Machado, I., Silva, L. R., Giaouris, E. D., Melo, L. F., & Simões, M. (2020). Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Research International, 127, 108754.

Madsen, J. S., Burmølle, M., Hansen, L. H., & Sørensen, S. J. (2012). The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunology & Medical Microbiology, 65(2), 183-195.

Mason, C. J., Lowe-Power, T. M., Rubert-Nason, K. F., Lindroth, R. L., & Raffa, K. F. (2016). Interactions between bacteria and aspen defense chemicals at the phyllosphere–herbivore interface. Journal of chemical ecology, 42, 193-201.

Morgan, P. J., Barnett, L. M., Cliff, D. P., Okely, A. D., Scott, H. A., Cohen, K. E., & Lubans, D. R. (2013). Fundamental movement skill interventions in youth: A systematic review and meta-analysis. Pediatrics, 132(5), e1361-e1383.

Müh, U., Schuster, M., Heim, R., Singh, A., Olson, E. R., & Greenberg, E. P. (2006). Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrobial agents and chemotherapy, 50(11), 3674-3679.

Muhammad, M. H., Idris, A. L., Fan, X., Guo, Y., Yu, Y., Jin, X., & Huang, T. (2020). Beyond risk: bacterial biofilms and their regulating approaches. Frontiers in microbiology, 11, 928.

Nadeem, H., Niazi, P., Asif, M., Kaskavalci, G., & Ahmad, F. (2021). Bacterial strains integrated with surfactin molecules of Bacillus subtilis MTCC441 enrich nematocidal activity against Meloidogyne incognita. Plant Biology, 23(6), 1027-1036.

Nechacov, S. (2019). Factors Affecting Biofilm Formation in Oral Pathogenic Bacteria of the Red Complex.

Nwaiwu, O., & Aduba, C. C. (2020). An in silico analysis of acquired antimicrobial resistance genes in Aeromonas plasmids. AIMS microbiology, 6(1), 75.

O'Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Reviews in Microbiology, 54(1), 49-79.

O'Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B., & Kolter, R. (1999). [6] Genetic approaches to study of biofilms. Methods in enzymology, 310, 91-109.

Patwardhan, S. B., Pandit, C., Pandit, S., Verma, D., Lahiri, D., Nag, M., & Prasad, R. (2022). Illuminating the signalomics of microbial biofilm on plant surfaces. Biocatalysis and Agricultural Biotechnology, 102537.

Pinski, A., Betekhtin, A., Hupert-Kocurek, K., Mur, L. A., & Hasterok, R. (2019). Defining the genetic basis of plant–endophytic bacteria interactions. International Journal of Molecular Sciences, 20(8), 1947.

Prouty, A. M., Schwesinger, W. H., & Gunn, J. S. (2002). Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infection and immunity, 70(5), 2640-2649.

Pinski, A., Betekhtin, A., Hupert-Kocurek, K., Mur, L. A., & Hasterok, R. (2019). Defining the genetic basis of plant–endophytic bacteria interactions. International Journal of Molecular Sciences, 20(8), 1947.

Ramey, C. T., & Ramey, S. L. (2004). Early learning and school readiness: Can early intervention make a difference?. Merrill-Palmer Quarterly, 50(4), 471-491.

Rybtke, M., Hultqvist, L. D., Givskov, M., & Tolker-Nielsen, T. (2015). Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. Journal of molecular biology, 427(23), 3628-3645.

Shankar, V., Baghdayan, A. S., Huycke, M. M., Lindahl, G., & Gilmore, M. S. (1999). Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infection and immunity, 67(1), 193-200.

Sorroche, F. G., Spesia, M. B., Zorreguieta, Á., & Giordano, W. (2012). A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Applied and environmental microbiology, 78(12), 4092-4101.

Tan, M. S., White, A. P., Rahman, S., & Dykes, G. A. (2016). Role of fimbriae, flagella and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 to plant cell wall models. PLoS One, 11(6), e0158311.

Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant–microbiome interactions: from community assembly to plant health. Nature reviews microbiology, 18(11), 607-621.

Trunk, T., Khalil, H. S., & Leo, J. C. (2018). Bacterial autoaggregation. AIMS microbiology, 4(1), 140.

Vander Hoogerstraete, T., Wellens, S., Verachtert, K., & Binnemans, K. (2013). Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chemistry, 15(4), 919-927.

Van Houdt, R., & Michiels, C. W. (2005). Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in microbiology, 156(5-6), 626-633.

Vasudevan, R. (2014). Biofilms: microbial cities of scientific significance. J Microbiol Exp, 1(3), 00014.

Venturi, V., & Bez, C. (2021). A call to arms for cell–cell interactions between bacteria in the plant microbiome. Trends in Plant Science, 26(11), 1126-1132.

Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol., 21, 319-346.

Wang, H., Ding, S., Dong, Y., Ye, K., Xu, X., & Zhou, G. (2013). Biofilm formation of Salmonella serotypes in simulated meat processing environments and its relationship to cell characteristics. Journal of food protection, 76(10), 1784-1789.

Wheatley, R. M., & Poole, P. S. (2018). Mechanisms of bacterial attachment to roots. FEMS microbiology reviews, 42(4), 448-461.

Wilke, G. A., & Wardenburg, J. B. (2010). Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin–mediated cellular injury. Proceedings of the National Academy of Sciences, 107(30), 13473-13478.

Wilson, J. W., Schurr, M. J., LeBlanc, C. L., Ramamurthy, R., Buchanan, K. L., & Nickerson, C. A. (2002). Mechanisms of bacterial pathogenicity. Postgraduate medical journal, 78(918), 216-224.

Wozniak, S. E., Gee, L. L., Wachtel, M. S., & Frezza, E. E. (2009). Adipose tissue: the new endocrine organ? A review article. Digestive diseases and sciences, 54, 1847-1856.

Wu, L., Gao, Y., Liu, J., & Li, H. (2017). Event-triggered sliding mode control of stochastic systems via output feedback. Automatica, 82, 79-92.

Wurpel, D. J., Totsika, M., Allsopp, L. P., Hartley-Tassell, L. E., Day, C. J., Peters, K. M., & Schembri, M. A. (2014). F9 fimbriae of uropathogenic Escherichia coli are expressed at low temperature and recognise Galβ1-3GlcNAc-containing glycans. PloS one, 9(3), e93177.

Yaron, S., & Römling, U. (2014). Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microbial biotechnology, 7(6), 496-516.

Downloads

Published

2023-03-09

How to Cite

Niazi, P., Monib, A. W., Ozturk, H., Mansoor, M., Azizi, A., & Hassand, M. H. (2023). Review on Surface Elements and Bacterial Biofilms in Plant-Bacterial Associations. Journal for Research in Applied Sciences and Biotechnology, 2(1), 204–214. https://doi.org/10.55544/jrasb.2.1.30

Most read articles by the same author(s)