Targeted Therapies in Cancer Treatment: Unveiling the Latest Breakthroughs and Promising Approaches

Authors

  • Vishal Rai Department of Pharmacy, Dr. M.C. Saxena College of Pharmacy, Uttar Pradesh, INDIA.
  • Yash Gupta Department of Pharmacy, Dr. M.C. Saxena College of Pharmacy, Uttar Pradesh, INDIA.
  • Shobhit Prakash Srivastava Department of Pharmacy, Dr. M.C. Saxena College of Pharmacy, Uttar Pradesh, INDIA.
  • Amrita Shukla Department of Pharmacy, Dr. M.C. Saxena College of Pharmacy, Uttar Pradesh, INDIA.
  • Nisha Bano Department of Pharmacy, Dr. M.C. Saxena College of Pharmacy, Uttar Pradesh, INDIA.
  • Soban Khan Department of Pharmacy, Dr. M.C. Saxena College of Pharmacy, Uttar Pradesh, INDIA.

DOI:

https://doi.org/10.55544/jrasb.2.6.26

Keywords:

Cancer prevention, Anticancer

Abstract

This review article delves into the realm of cancer treatment, specifically focusing on targeted therapies. It aims to present the most recent breakthroughs and promising approaches in this rapidly evolving field. Targeted therapies have emerged as a revolutionary approach in cancer treatment, aiming to selectively and precisely attack cancer cells while sparing normal tissues. This article explores various targeted therapy strategies, including monoclonal antibodies, small molecule inhibitors, immunotherapies, and gene therapies. In recent years, there have been significant advancements in understanding the molecular and genetic basis of cancer, which has led to the identification of novel therapeutic targets. The article sheds light on these newly discovered targets and highlights their potential in designing more effective and personalized treatment regimens for cancer patients. Furthermore, the review addresses the challenges and limitations associated with targeted therapies, such as resistance mechanisms and the heterogeneity of tumors. Strategies to overcome these obstacles are discussed, including combination therapies and the development of next-generation targeted agents. The role of precision medicine in cancer treatment is also explored, emphasizing the importance of biomarker-guided therapy selection to optimize treatment outcomes. Additionally, the review touches upon the integration of targeted therapies with conventional treatments, such as chemotherapy and radiation therapy, to enhance overall treatment efficacy. Finally, the article examines ongoing clinical trials and preclinical studies that are investigating cutting-edge targeted therapies, showcasing the potential impact of these approaches in transforming cancer care.

In conclusion, targeted therapies in cancer treatment represent a rapidly expanding field with remarkable breakthroughs and promising avenues. Understanding the latest advancements and challenges in this domain is essential to harness the full potential of targeted therapies and ultimately improve patient outcomes in the battle against cancer.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Yarden, Y., & Pines, G. (2012). The ERBB network: a convergence point of signaling pathways in cancer. Nature Reviews Cancer, 12(8), 623-631.

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-674.

Garraway, L. A., & Janne, P. A. (2012). Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discovery, 2(3), 214-226.

National Cancer Institute. (2020). Targeted Cancer Therapies. Retrieved from https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet

Schwaederle, M., Zhao, M., Lee, J. J., Eggermont, A. M., Schilsky, R. L., Mendelsohn, J., ... & Kurzrock, R. (2015). Impact of precision medicine in diverse cancers: a meta-analysis of phase II clinical trials. Journal of Clinical Oncology, 33(32), 3817-3825.

Drilon, A., & Li, G. (2013). Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncogene, 34(28), 3999-4008.

Oxnard, G. R., Binder, A., & Janne, P. A. (2013). New targetable oncogenes in non-small-cell lung cancer. Journal of Clinical Oncology, 31(8), 1097-1104.

Ellis, M. J., Ding, L., Shen, D., Luo, J., Suman, V. J., Wallis, J. W., ... & Marcom, P. K. (2012). Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature, 486(7403), 353-360.

Druker, B. J., Talpaz, M., Resta, D. J., Peng, B., Buchdunger, E., Ford, J. M., ... & Sawyers, C. L. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. New England Journal of Medicine, 344(14), 1031-1037.

Hodi, F. S., O'Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., ... & Urba, W. J. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 363(8), 711-723.

Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., ... & Norton, L. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 344(11), 783-792.

Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., ... & June, C. H. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. New England Journal of Medicine, 371(16), 1507-1517.

Naldini, L. (2015). Gene therapy returns to centre stage. Nature, 526(7573), 351-360.

. Sharma, P., & Allison, J. P. (2015). Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell, 161(2), 205-214.

Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., ... & Sznol, M. (2012). Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. New England Journal of Medicine, 366(26), 2443-2454.

Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N. E., ... & Reckamp, K. L. (2015). Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. New England Journal of Medicine, 373(17), 1627-1639.

Weber, J. S., D'Angelo, S. P., Minor, D., Hodi, F. S., Gutzmer, R., Neyns, B., ... & Hoeller, C. (2015). Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. The Lancet Oncology, 16(4), 375-384.

Chen, D. S., & Mellman, I. (2017). Oncology meets immunology: the cancer-immunity cycle. Immunity, 39(1), 1-10.

Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., ... & Norton, L. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 344(11), 783-792.

Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N., ... & Ladrera, G. (2009). Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. New England Journal of Medicine, 361(10), 947-957.

Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., ... & Kabbinavar, F. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New England Journal of Medicine, 350(23), 2335-2342.

Flaherty, K. T., Robert, C., Hersey, P., Nathan, P., Garbe, C., Milhem, M., ... & Huang, B. (2012). Improved survival with MEK inhibition in BRAF-mutated melanoma. New England Journal of Medicine, 367(2), 107-114.

Hallek, M., Fischer, K., Fingerle-Rowson, G., Fink, A. M., Busch, R., Mayer, J., ... & Fuchs, R. (2010). Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. The Lancet, 376(9747), 1164-1174.

Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroiakovski, D., ... & Boisvert, D. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. New England Journal of Medicine, 372(1), 30-39.

Etheridge, M. L., Campbell, S. A., Erdman, A. G., Haynes, C. L., Wolf, S. M., & McCullough, J. (2013). The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine: Nanotechnology, Biology and Medicine, 9(1), 1-14.

McWilliams, R. R., Kolesar, J. M., & Johnson, C. S. (2012). Promising practices for cancer clinical trials. Cancer Control, 19(3), 184-190.

Mondadori, C., Saccardi, R., & Peccatori, J. (2021). Clinical trials: past, present, and future. The Journal of Bone and Joint Surgery, 103(4), 357-364.

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-674.

Tannock, I. F., & Hickman, J. A. (2016). Limits to personalized cancer medicine. New England Journal of Medicine, 375(13), 1289-1294.

Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372(9), 793-795.

Von Hoff, D. D., Stephenson Jr, J. J., Rosen, P., Loesch, D. M., Borad, M. J., Anthony, S., ... & Sanders Jr, G. (2010). Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers. Journal of Clinical Oncology, 28(33), 4877-4883.

Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., ... & Norton, L. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 344(11), 783-792.

Downloads

Published

2024-01-10

How to Cite

Rai, V., Gupta, Y., Srivastava, S. P., Shukla, A., Bano, N., & Khan, S. (2024). Targeted Therapies in Cancer Treatment: Unveiling the Latest Breakthroughs and Promising Approaches. Journal for Research in Applied Sciences and Biotechnology, 2(6), 175–183. https://doi.org/10.55544/jrasb.2.6.26

Most read articles by the same author(s)