Therapeutic Potential of Quercetin and their Compound Against Ovarian Cancer: New Approaches & Application
DOI:
https://doi.org/10.55544/jrasb.3.5.5Keywords:
Ovarian cancer, Quercetin, Therapeutic potentialAbstract
Ovarian cancer is an exceptionally perilous form of cancer as it develops within the female reproductive system. Finding effective therapy platforms for ovarian cancer has been difficult because to the diverse array of molecular pathways and genetic alterations involved in its development. Therefore, it is imperative to discover novel therapeutic methodologies and advance their development. Medicinal herbs possess the capacity to independently or in combination with other pharmaceuticals, effectively treat malignancies such as ovarian cancer. Quercetin possesses remarkable anti-inflammatory and anti-cancer properties, making it one among numerous natural compounds with such qualities. Quercetin has demonstrated cytotoxicity against ovarian cancer cells in both laboratory experiments (in vitro) and live animal tests (in vivo). The potential anti-cancer effects of quercetin, particularly in relation to ovarian cancer, have not been extensively studied in human trials, despite encouraging findings from laboratory and animal experiments. Hence, it seems that quercetin could potentially be utilized in clinical trials as a therapeutic agent, either on its own or in conjunction with other chemotherapeutic drugs. This article will outline the primary aspects of quercetin's anti-cancer characteristics and thereafter concentrate on its application in the treatment of ovarian cancer.
Downloads
Metrics
References
Budiana, I. N. G., Angelina, M., & Pemayun, T. G. A. (2019). Ovarian cancer: Pathogenesis and current recommendations for prophylactic surgery. Journal of the Turkish German Gynecological Association, 20(1), 47–54. https://doi.org/10.4274/jtgga.galenos.2018.2018.0119
Kurman, R. J., & Shih, I. M. (2010). The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. The American journal of surgical pathology, 34(3), 433-443.
Koh, S. C. L., Huak, C. Y., Lutan, D., Marpuang, J., Ketut, S., Budiana, N. G., ... & Choolani, M. (2012). Combined panel of serum human tissue kallikreins and CA-125 for the detection of epithelial ovarian cancer. Journal of Gynecologic Oncology, 23(3), 175-181.
Kurman, R. J., & Shih, I. M. (2010). The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. The American journal of surgical pathology, 34(3), 433-443.
Erickson, B. K., Conner, M. G., & Landen Jr, C. N. (2013). The role of the fallopian tube in the origin of ovarian cancer. American journal of obstetrics and gynecology, 209(5), 409-414.
Kwon, J. S. (2015). Ovarian cancer risk reduction through opportunistic salpingectomy. Journal of Gynecologic Oncology, 26(2), 83-86.
Morelli, M., Venturella, R., Mocciaro, R., Di Cello, A., Rania, E., Lico, D., ... & Zullo, F. (2013). Prophylactic salpingectomy in premenopausal low-risk women for ovarian cancer: primum non nocere. Gynecologic oncology, 129(3), 448-451.
American College of Obstetricians and Gynecologists. (2015). Salpingectomy for ovarian cancer prevention. Committee opinion no. 620. Obstet Gynecol, 125, 279-81.
Williamson, G., Day, A. J., Plumb, G. W., & Couteau, D. (2000). Human metabolic pathways of dietary flavonoids and cinnamates. Biochemical Society Transactions, 28(2), 16-22.
Falcão, S. I., Vale, N., Gomes, P., Domingues, M. R., Freire, C., Cardoso, S. M., & Vilas‐Boas, M. (2013). Phenolic profiling of Portuguese propolis by LC–MS spectrometry: Uncommon propolis rich in flavonoid glycosides. Phytochemical Analysis, 24(4), 309-318.
Popova, M. P., Chinou, I. B., Marekov, I. N., & Bankova, V. S. (2009). Terpenes with antimicrobial activity from Cretan propolis. Phytochemistry, 70(10), 1262-1271.
Lakhanpal, P., & Rai, D. K. (2007). Quercetin: a versatile flavonoid. Internet Journal of Medical Update, 2(2), 22-37.
Godwin, A. K., Testa, J. R., Handel, L. M., Liu, Z., Vanderveer, L. A., Tracey, P. A., & Hamilton, T. C. (1992). Spontaneous transformation of rat ovarian surface epithelial cells: association with cytogenetic changes and implications of repeated ovulation in the etiology of ovarian cancer. JNCI: Journal of the National Cancer Institute, 84(8), 592-601.
Saed, G. M., Diamond, M. P., & Fletcher, N. M. (2017). Updates of the role of oxidative stress in the pathogenesis of ovarian cancer. Gynecologic oncology, 145(3), 595-602.
Ness, R. B., & Cottreau, C. (1999). Possible role of ovarian epithelial inflammation in ovarian cancer. Journal of the National Cancer Institute, 91(17), 1459-1467.
Kang, Y. C., Kim, K. M., Lee, K. S., Namkoong, S., Lee, S. J., Han, J. A., ... & Kim, Y. M. (2004). Serum bioactive lysophospholipids prevent TRAIL-induced apoptosis via PI3K/Akt-dependent cFLIP expression and Bad phosphorylation. Cell Death & Differentiation, 11(12), 1287-1298.
Chou, C. H., Wei, L. H., Kuo, M. L., Huang, Y. J., Lai, K. P., Chen, C. A., & Hsieh, C. Y. (2005). Up-regulation of interleukin-6 in human ovarian cancer cell via a Gi/PI3K–Akt/NF-κB pathway by lysophosphatidic acid, an ovarian cancer-activating factor. Carcinogenesis, 26(1), 45-52.
Mackay, H. J., & Twelves, C. J. (2007). Targeting the protein kinase C family: are we there yet?. Nature Reviews Cancer, 7(7), 554-562.
Saed, G. M., Fletcher, N. M., Jiang, Z. L., Abu-Soud, H. M., & Diamond, M. P. (2011). Dichloroacetate induces apoptosis of epithelial ovarian cancer cells through a mechanism involving modulation of oxidative stress. Reproductive sciences, 18(12), 1253-1261.
Shafabakhsh, R., & Asemi, Z. (2019). Quercetin: a natural compound for ovarian cancer treatment. Journal of ovarian research, 12(1), 55. https://doi.org/10.1186/s13048-019-0530-4
Rais, J., Jafri, A., Siddiqui, S., Tripathi, M., & Arshad, M. (2017). Phytochemicals in the treatment of ovarian cancer. Front Biosci (Elite Ed), 9(1), 67-75.
Metodiewa, D., Jaiswal, A. K., Cenas, N., Dickancaité, E., & Segura-Aguilar, J. (1999). Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free radical biology and medicine, 26(1-2), 107-116.
Bischoff, S. C. (2008). Quercetin: potentials in the prevention and therapy of disease. Current Opinion in Clinical Nutrition & Metabolic Care, 11(6), 733-740.
Hirpara, K. V., Aggarwal, P., Mukherjee, A. J., Joshi, N., & Burman, A. C. (2009). Quercetin and its derivatives: synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 9(2), 138-161.
Song, N. R., Chung, M. Y., Kang, N. J., Seo, S. G., Jang, T. S., Lee, H. J., & Lee, K. W. (2014). Quercetin suppresses invasion and migration of H-Ras-transformed MCF10A human epithelial cells by inhibiting phosphatidylinositol 3-kinase. Food chemistry, 142, 66-71.
Gates, M. A., Vitonis, A. F., Tworoger, S. S., Rosner, B., Titus‐Ernstoff, L., Hankinson, S. E., & Cramer, D. W. (2009). Flavonoid intake and ovarian cancer risk in a population‐based case‐control study. International journal of cancer, 124(8), 1918-1925.
Kuo, P. C., Liu, H. F., & Chao, J. I. (2004). Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells. Journal of Biological Chemistry, 279(53), 55875-55885.
Sharmila, G., Bhat, F. A., Arunkumar, R., Elumalai, P., Singh, P. R., Senthilkumar, K., & Arunakaran, J. (2014). Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clinical nutrition, 33(4), 718-726.
Schulz, M., Lahmann, P. H., Boeing, H., Hoffmann, K., Allen, N., Key, T. J., ... & Riboli, E. (2005). Fruit and vegetable consumption and risk of epithelial ovarian cancer: the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiology Biomarkers & Prevention, 14(11), 2531-2535.
Gupta, D. S., Gadi, V., Kaur, G., Gupta, M., Kumar, A., & Tuli, H. S. (2023). Exploration of the Growing Therapeutic Potentials of Quercetin in Ovarian Cancer Management. Current Pharmacology Reports, 9(6), 455-467.
Parvaresh, A., Razavi, R., Rafie, N., Ghiasvand, R., Pourmasoumi, M., & Miraghajani, M. (2016). Quercetin and ovarian cancer: An evaluation based on a systematic review. Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences, 21, 34. https://doi.org/10.4103/1735-1995.181994
Vafadar, A., Shabaninejad, Z., Movahedpour, A., Fallahi, F., Taghavipour, M., Ghasemi, Y., Akbari, M., Shafiee, A., Hajighadimi, S., Moradizarmehri, S., Razi, E., Savardashtaki, A., & Mirzaei, H. (2020). Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell & bioscience, 10, 32. https://doi.org/10.1186/s13578-020-00397-0
Rauf, A., Imran, M., Khan, I. A., ur‐Rehman, M., Gilani, S. A., Mehmood, Z., & Mubarak, M. S. (2018). Anticancer potential of quercetin: A comprehensive review. Phytotherapy research, 32(11), 2109-2130.
Long, Q., Xie, Y., Huang, Y., Wu, Q., Zhang, H., Xiong, S., ... & Gong, C. (2013). Induction of apoptosis and inhibition of angiogenesis by PEGylated liposomal quercetin in both cisplatin-sensitive and cisplatin-resistant ovarian cancers. Journal of biomedical nanotechnology, 9(6), 965-975.
Scambia, G., Ranelletti, F. O., Panici, P. B., Bonanno, G., De Vincenzo, R., Piantelli, M., & Mancuso, S. (1990). Synergistic antiproliferative activity of quercetin and cisplatin on ovarian cancer cell growth. Anti-cancer drugs, 1(1), 45-48.
Shen, F., Herenyiova, M., & Weber, G. (1999). Synergistic down-regulation of signal transduction and cytotoxicity by tiazofurin and quercetin in human ovarian carcinoma cells. Life sciences, 64(21), 1869-1876.
Yi, L., Zongyuan, Y., Cheng, G., Lingyun, Z., GuiLian, Y., & Wei, G. (2014). Quercetin enhances apoptotic effect of tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer‐binding protein homologous protein (CHOP)‐death receptor 5 pathway. Cancer science, 105(5), 520-527.
Yamauchi, K., Afroze, S. H., Mitsunaga, T., McCormick, T. C., Kuehl, T. J., Zawieja, D. C., & Uddin, M. N. (2017). 3, 4’, 7-O-trimethylquercetin inhibits invasion and migration of ovarian cancer cells. Anticancer Research, 37(6), 2823-2829.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M. Duraipandian, K. Elumalai, Pranjali Bajrang Chole, J. Ambika, S. Gajendhini, N. Kesavapriya, M. Geetha, Farha Naaz
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.