Peptide-Based Drugs: Development and Therapeutic Applications

Authors

  • Akanksha Kanojia Department of Pharmacy, Suyash Institute of Pharmacy, Gorakhpur, Uttar Pradesh, INDIA
  • Shekhar Singh Department of Pharmacy, Suyash Institute of Pharmacy, Gorakhpur, Uttar Pradesh, INDIA
  • Vishal Rai Department of Pharmacy, Suyash Institute of Pharmacy, Gorakhpur, Uttar Pradesh, INDIA
  • Ajay Yadav Department of Pharmacy, Suyash Institute of Pharmacy, Gorakhpur, Uttar Pradesh, INDIA

DOI:

https://doi.org/10.55544/jrasb.3.4.7

Keywords:

Peptide Therapeutics, Drug Development, Peptide Stability, Targeted Therapy, Clinical Applications

Abstract

Current advances in knowledge about peptides as drugs are of great significance; They have planning potentialities in different sections of medicinal practice. This review will summarize the progress in the synthesis and the biological activities of the peptide-based drug, along with some of the uses. We start with the historical aspect and key points in the development of the corresponding field. In general, the development part describes the approaches of peptides synthesis, design strategies, screening methods, and optimization for stability and bioavailability. We then describe the action of such mechanisms as with respect to receptors, enzymes, and peptides that can penetrate cells.  It has also expanded the assessment of the description of peptide drugs in the treatment of cancer, cardiovascular diseases, metabolic diseases, neurological diseases, infectious diseases, and immunotherapy. We cover both the problems in the formation of peptide drugs like stability, delivery, and regulatory issues and the opportunities like nanotechnology, bioprinting, and CRISPR.  Last, we discuss the outlook of the peptide-based therapeutics and review features, which are promising for the development of new trends and perspectives of application. The present review is intended to give an up-to-date and easy to grasp information regarding the status and perspectives of peptide-associated medicines in contemporary pharmacology.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Barman, P., Joshi, S., Sharma, S., Preet, S., Sharma, S., & Saini, A. (2023, May 24). Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Springer Science+Business Media, 29(4). https://doi.org/10.1007/s10989-023-10524-3

Buchanan, A., & Revell, J D. (2015, January 1). Novel Therapeutic Proteins and Peptides. Elsevier BV, 171-197. https://doi.org/10.1016/b978-0-12-416603-5.00008-0

Fosgerau, K., & Hoffmann, T. (2015, January 1). Peptide therapeutics: current status and future directions. Elsevier BV, 20(1), 122-128. https://doi.org/10.1016/j.drudis.2014.10.003

Torre, B G D L., & Alberício, F. (2020, May 13). Peptide Therapeutics 2.0. Multidisciplinary Digital Publishing Institute, 25(10), 2293-2293. https://doi.org/10.3390/molecules25102293

Vardaxi, A., Kafetzi, M., & Pispas, S. (2022, February 16). Polymeric Nanostructures Containing Proteins and Peptides for Pharmaceutical Applications. Multidisciplinary Digital Publishing Institute, 14(4), 777-777. https://doi.org/10.3390/polym14040777

Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G., Wang, X., Wang, R., & Fu, C. (2022, February 14). Therapeutic peptides: current applications and future directions. Springer Nature, 7(1). https://doi.org/10.1038/s41392-022-00904-4

Naurin, Lalani., Sunilkumar, Ramsuratbhai, Tivari., Vicky, Jain., Yashwantsinh, Jadeja. (2024). Review on therapeutic potential of peptides: Advancements in synthesis methods, linear and cyclic peptides, and strategies for overcoming challenges. Peptide science, doi: 10.1002/pep2.24343

(2022). Therapeutic peptides: historical perspectives and current development trends. 3-33. doi: 10.1016/b978-0-12-820141-1.00027-3

V., T., Ivanov., V., I., Deigin. (2023). Evolution of Peptide Biopharmaceuticals. Bioorganicheskaia khimiia, doi: 10.31857/s0132342323030120

Aneta, Myšková., David, Sýkora., J., Kuneš., Lenka, Maletínská. (2024). Lipidization as a Tool for Peptide Drug Development. doi: 10.54779/chl20240263

Seong-Bin, Yang., Nipa, Banik., Bomin, Han., Dong-Nyeong, Lee., Joo, Ho, Park. (2022). Peptide-Based Bioconjugates and Therapeutics for Targeted Anticancer Therapy. Pharmaceutics, 14 doi: 10.3390/pharmaceutics14071378

Joseph, Dodd-O., Amanda, M., Acevedo-Jake., Abdul, Rahman, Azizogli., Vikram, Khipple, Mulligan., Vivek, Kumar. (2022). How to Design Peptides.. 2597:187-216. doi: 10.1007/978-1-0716-2835-5_15

(2023). Modeling and simulation of peptides. 35-56. doi: 10.1016/b978-0-323-99917-5.00009-3

Goodrich, Lauren., Lyamichev, Victor., Patel, Jigar., Pinapati, Richard., Sullivan, Eric., Richmond, Todd. (2020). Peptide libraries having enhanced subsequence diversity and methods for use thereof.

Marian, Vincenzi., Flavia, Anna, Mercurio., Marilisa, Leone. (2024). Virtual Screening of Peptide Libraries: The Search for Peptide-Based Therapeutics Using Computational Tools. International Journal of Molecular Sciences, 25 doi: 10.3390/ijms25031798

Yangqiang, Chen., Chonggang, Duan., Kai, Chen., Shumeng, Sun., Daizhou, Zhang., Xiangjing, Meng. (2022). Screening technology of cyclic peptide library based on gene encoding. Medicine in drug discovery, 16:100145-100145. doi: 10.1016/j.medidd.2022.100145

Yi, Wang., Kaili, Zhang., Yanjie, Zhao., Yifan, Li., Weijun, Su., Shuai, Li. (2023). Construction and Applications of Mammalian Cell-Based DNA-Encoded Peptide/Protein Libraries.. ACS Synthetic Biology, doi: 10.1021/acssynbio.3c00043

Panchali, Barman., Shubhi, Joshi., Sheetal, Sharma., Simran, Preet., Shweta, Sharma., Avneet, Saini. (2023). Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. International Journal of Peptide Research and Therapeutics, 29(4) doi: 10.1007/s10989-023-10524-3

Rodrigo, Ochoa., Pilar, Cossio., Thomas, R., Fox. (2022). Protocol for iterative optimization of modified peptides bound to protein targets. Journal of Computer-aided Molecular Design, 36(11):825-835. doi: 10.1007/s10822-022-00482-1

Rania, Soudy., N., Byeon., Y., Raghuwanshi., Sahar, Ahmed., Afsaneh, Lavasanifar., Kamaljit, Kaur. (2017). Engineered Peptides for Applications in Cancer-Targeted Drug Delivery and Tumor Detection.. Mini-reviews in Medicinal Chemistry, 17(18):1696-1712. doi: 10.2174/1389557516666160219121836

Huizi, Wu., Huizi, Wu., Jiaguo, Huang. (2018). Optimization of Protein and Peptide Drugs Based on the Mechanisms of Kidney Clearance.. Protein and Peptide Letters, 25(6):514-521. doi: 10.2174/0929866525666180530122835

Duaa, Zahra., Ayesha, Maqsood., Usman, Ali, Ashfaq. (2023). Recent Updates on Peptide Molecules in Drug and Vaccine Development.. Current Pharmaceutical Design, doi: 10.2174/1381612829666230717121632

Sijin, Liu. (2022). Peptide-based drugs to inhibit LDH5, a potential target for cancer therapy. doi: 10.5204/thesis.eprints.232526

Mingxing, Tang., Xin, Zhang., Yanhong, Huang., Wen-Fang, Cheng., Jing, Qu., Shuiqing, Gui., Liang, Li., Shuo, Li. (2023). Peptide-based inhibitors hold great promise as the broad-spectrum agents against coronavirus. Frontiers in Microbiology, 13 doi: 10.3389/fmicb.2022.1093646

A., A., Boshchenko., L., N., Maslov., A., V., Mukhomedzyanov., Olga, A., Zhuravleva., Alisa, S., Slidnevskaya., N., V., Naryzhnaya., Arina, S., Zinovieva., Philipp, A., Ilinykh. (2024). Peptides Are Cardioprotective Drugs of the Future: The Receptor and Signaling Mechanisms of the Cardioprotective Effect of Glucagon-like Peptide-1 Receptor Agonists. International Journal of Molecular Sciences, 25 doi: 10.3390/ijms25094900

Ursula, Dietrich., Ralf, Dürr., Joachim, Koch. (2013). Peptides as Drugs: From Screening to Application. Current Pharmaceutical Biotechnology, 14(5):501-512. doi: 10.2174/13892010113149990205

A., O., Shpakov. (2013). Peptides Derived from the Extracellular Loops of Receptors: Structure, Mechanism of Action, Use in Physiology and Medicine. Neuroscience and Behavioral Physiology, 43(1):111-121. doi: 10.1007/S11055-012-9700-1

Stefano, Pluda., Ylenia, Mazzocato., Alessandro, Angelini. (2021). Peptide-Based Inhibitors of ADAM and ADAMTS Metalloproteinases.. Frontiers in Molecular Biosciences, 8:703715-. doi: 10.3389/FMOLB.2021.703715

Peng, Xu., Mingdong, Huang. (2020). Small Peptides as Modulators of Serine Proteases.. Current Medicinal Chemistry, 27(22):3686-3705. doi: 10.2174/0929867325666181016163630

Hongshuang, Wang., Robert, S., Dawber., Peiyu, Zhang., Martin, Walko., Andrew, J., Wilson., Xiaohui, Wang., Xiaohui, Wang. (2021). Peptide-based inhibitors of protein–protein interactions: biophysical, structural and cellular consequences of introducing a constraint. Chemical Science, 12(17):5977-5993. doi: 10.1039/D1SC00165E

Xuefei, Wang., Duan, Ni., Yaqin, Liu., Shaoyong, Lu. (2021). Rational Design of Peptide-Based Inhibitors Disrupting Protein-Protein Interactions. Frontiers in Chemistry, 9:682675-682675. doi: 10.3389/FCHEM.2021.682675

Yuhang, Zhai., Siying, Li., Hui, Wang., Yuping, Shan. (2024). Revealing the dynamic mechanism of cell-penetrating peptides across cell membranes at the single-molecule level.. Journal of Materials Chemistry B, doi: 10.1039/d4tb00522h

Heejin, Shin., Byung, Kyu, Lee., Hyun-A, kang. (2023). Transdermal Properties of Cell-Penetrating Peptides: Applications and Skin Penetration Mechanisms.. ACS applied bio materials, doi: 10.1021/acsabm.3c00659

Alessandro, Gori., Greta, Bergamaschi., Alberto, Vitali. (2023). Cell Penetrating Peptides: classification, mechanisms, methods of study and applications.. ChemMedChem,

e202300236 - e202300236. doi: 10.1002/cmdc.202300236

Niloofardokht, Khairkhah., Ali, Namvar., Azam, Bolhassani. (2023). Application of Cell Penetrating Peptides as a Promising Drug Carrier to Combat Viral Infections. Molecular Biotechnology, 1-16. doi: 10.1007/s12033-023-00679-1

Angela, Carollo., Stefano, Papi., Marco, Chinol. (2016). Lutetium-177 Labeled Peptides: The European Institute of Oncology Experience.. Current Radiopharmaceuticals, 9(1):19-32. doi: 10.2174/1874471008666150313111633

Gaber, O., Moustafa. (2021). Therapeutic Potentials of Cyclic Peptides as Promising Anticancer Drugs. The Egyptian Journal of Chemistry, 64(4):1777-1787. doi: 10.21608/EJCHEM.2021.58384.3255

Christine, Rangger., Roland, Haubner. (2020). Radiolabelled Peptides for Positron Emission Tomography and Endoradiotherapy in Oncology. Pharmaceuticals, policy and law, 13(2):22-. doi: 10.3390/PH13020022

Sri, Murugan, Poongkavithai, Vadevoo., Smriti, Gurung., Gowri, Rangaswamy, Gunassekaran., Seok-Min, Lee., Jae-Won, Yoon., Yun-Ki, Lee., Byung, Gul, Lee. (2023). Peptides as multifunctional players in cancer therapy. Experimental and Molecular Medicine, 55:1099-1109. doi: 10.1038/s12276-023-01016-x

Anirban, Goutam, Mukherjee., Uddesh, Ramesh, Wanjari., Abilash, Valsala, Gopalakrishnan., Pragya, Bradu., Antara, Biswas., Raja, Venkatesh, Ganesan., Kaviyarasi, Renu., Abhijit, Dey., Balachandar, Vellingiri., Achraf, El, Allali., Alsamman, M., Alsamman., Hatem, Zayed., C., George, Priya, Doss. (2023). Evolving strategies and application of proteins and peptide therapeutics in cancer treatment.163:114832-1148.doi: 10.1016/j.biopha.2023.114832

Caroline, M., Li., Pouya, Haratipour., Robert, G., Lingeman., J., Jefferson, P., Perry., Long, Gu., Robert, J., Hickey., Linda, H., Malkas. (2021). Novel Peptide Therapeutic Approaches for Cancer Treatment. Cells, 10(11):2908-. doi: 10.3390/CELLS10112908

Debopriya, Bose., Laboni, Roy., Subhrangsu, Chatterjee. (2022). Peptide therapeutics in the management of metastatic cancers. RSC Advances, 12(33):21353-21373. doi: 10.1039/d2ra02062a

Daniella, A., Sahagun., Jack, B., Lopuszynski., K., Feldman., Nicholas, Pogodzinski., Maliha, Zahid. (2024). Toxicity Studies of Cardiac-Targeting Peptide Reveal a Robust Safety Profile. Pharmaceutics, doi: 10.3390/pharmaceutics16010073

N., Pise., Arati, Prabhu., Radhika, Raheja., Illham, Dhala. (2022). Therapeutic Peptides: Unravelling Conformational Dynamics by Systematic Application of Biophysical Techniques.. Current Protein & Peptide Science, 23(9):619-641. doi: 10.2174/1389203723666220908150054

Gašper, Tonin., Jasna, Klen. (2023). Eptifibatide, an Older Therapeutic Peptide with New Indications: From Clinical Pharmacology to Everyday Clinical Practice. International Journal of Molecular Sciences, 24(6):5446-5446. doi: 10.3390/ijms24065446

Hongjing, Luo., Heping, Wang., Meng, Xiao., Haixue, Jia., Chunhua, Ren., Jianfeng, Liu. (2024). Peptide‐Based Supramolecular Therapeutics for Fighting Major Diseases. Advanced Functional Materials, doi: 10.1002/adfm.202314492

(2022). Cardiovascular-derived therapeutic peptidomimetics in cardiovascular disease. 579-614. doi: 10.1016/b978-0-12-820141-1.00011-x

Emir, Muzurovic., Špela, Volčanšek., Karin, Zibar, Tomšić., Andrej, Janez., Dimitri, P., Mikhailidis., Manfredi, Rizzo., Christos, S., Mantzoros. (2022). Glucagon-Like Peptide-1 Receptor Agonists and Dual Glucose-Dependent Insulinotropic Polypeptide/Glucagon-Like Peptide-1 Receptor Agonists in the Treatment of Obesity/Metabolic Syndrome, Prediabetes/Diabetes and Non-Alcoholic Fatty Liver Disease—Current Evidence. Journal of Cardiovascular Pharmacology and Therapeutics, 27:107424842211463-107424842211463. doi: 10.1177/10742484221146371

Kuldeep, Singh., J., K., Gupta., Shivendra, Kumar., Urvashi, Soni. (2024). A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Bioactive Peptides.. Current Protein & Peptide Science, doi: 10.2174/0113892037275221240327042353

Jeetendra, Kumar, Gupta., Kuldeep, Singh. (2023). Pharmacological Potential of Bioactive Peptides for the Treatment of Diseases Associated with Alzheimer's and Brain Disorders.. Current Molecular Medicine, doi: 10.2174/1566524023666230907115753

Meenakshi, Bose., Gabriela, Farias, Quipildor., Michelle, E., Ehrlich., Stephen, R.J., Salton. (2022). Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development. Cells, 11(22):3629-3629. doi: 10.3390/cells11223629

(2023). Neuroprotective Properties of Peptides. doi: 10.5772/intechopen.109967

Eva, Ullmann., Shaista, Kawanl. (2022). Potentials of Neuropeptides as Therapeutic Agents for Neurological Diseases. Advances in Cardiovascular Diseases, 10(2):343-343. doi: 10.3390/biomedicines10020343

Manish, Dwivedi., Meet, Dineshbhai, Parmar., Debalina, Mukherjee., Anuradha, Yadava., Hitendra, Singh, Yadav., Nandini, Pankaj, Saini. (2023). Biochemistry, mechanistic intricacies, and therapeutic potential of Antimicrobial Peptides: an alternative to traditional Antibiotics.. Current Medicinal Chemistry, doi: 10.2174/0109298673268458230926105224

Masoumeh, Sadat, Mousavi, Maleki., Soroush, Sardari., Ali, Ghandehari, Alavijeh., Hamid, Madanchi. (2022). Recent Patents and FDA-Approved Drugs Based on Antiviral Peptides and Other Peptide-Related Antivirals. International Journal of Peptide Research and Therapeutics, 29(1) doi: 10.1007/s10989-022-10477-z

Linda, Sukmarini. (2022). Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses. Molecules, 27(9):2619-2619. doi: 10.3390/molecules27092619

Ming-Hsin, Yang., Shuai, Li., Chunye, Zhang. (2023). Antimicrobial peptides with antiviral and anticancer properties and their modification and nanodelivery systems. Current research in biotechnology, 5:100121-100121. doi: 10.1016/j.crbiot.2023.100121

Masoumeh, Sadat, Mousavi, Maleki., Soroush, Sardari., Ali, Ghandehari, Alavijeh., Hamid, Madanchi. (2022). Recent Patents and FDA-Approved Drugs Based on Antiviral Peptides and Other Peptide-Related Antivirals. International Journal of Peptide Research and Therapeutics, 29(1) doi: 10.1007/s10989-022-10477-z

(2023). Peptides with antiviral activities. 219-235. doi: 10.1016/b978-0-323-85682-9.00002-7

Longtianyang, Lei., Xingyu, Cai., Hua, Wei., Cui-Yun, Yu. (2024). Immunomodulatory Peptides for Tumor Treatment.. Advanced Healthcare Materials, e2400512-e2400512. doi: 10.1002/adhm.202400512

Yunqing, Jiang. (2024). Peptide Vaccines in Cancer Immunotherapy. doi: 10.61173/bmyy4c24

(2023). Data from Optimization of Peptide Vaccines to Induce Robust Antitumor CD4 T-cell Responses. doi: 10.1158/2326-6066.c.6548458.v1

Tao, Huang., Xianfu, Sun., X, Meng., Mengdie, Chen., Ya-Peng, Li., Shengnan, Du., Yingqiu, Qi., Hong-mei, Ge. (2022). Peptide self-assembled nanomedicine induces antitumor immunity by blocking the PD-1/PD-L1 axis. Frontiers in Materials, 9 doi: 10.3389/fmats.2022.1056600

Jingjing, Du., Zhenhong, Su., Haoyi, Yu., Sanhai, Qin., Dongyuan, Wang. (2023). From design to clinic: Engineered peptide nanomaterials for cancer immunotherapy. Frontiers in Chemistry, 10 doi: 10.3389/fchem.2022.1107600

Luigi, Buonaguro., Maria, Tagliamonte. (2023). Peptide-based vaccine for cancer therapies. Frontiers in Immunology, 14 doi: 10.3389/fimmu.2023.1210044

Longtianyang, Lei., Xingyu, Cai., Hua, Wei., Cui-Yun, Yu. (2024). Immunomodulatory Peptides for Tumor Treatment.. Advanced Healthcare Materials, e2400512-e2400512. doi: 10.1002/adhm.202400512

Feliciana, Real-Fernández., Fosca, Errante., Andrea, Di, Santo., Anna, Maria, Papini., Paolo, Rovero. (2023). Therapeutic proteins immunogenicity: a peptide point of view. doi: 10.37349/eds.2023.00025

Christina, Avanti. (2023). Kajian Sistematis tentang Peptida Parenteral: Instabilitas, Mekanisme Degradasi, dan Strategi Formulasinya. JFI : Jurnal Farmasi Indonesia, 15(1):1-10. doi: 10.35617/jfionline.v15i1.133

Jingrui, Li., Huidan, Wang., Miao, Chen., Xiaoyuan, Zhang., Songbo, Xie., Jie, Qin. (2023). Peptide-based PROTACs: Current Challenges and Future Perspectives.. Current medicinal chemistry, 30 doi: 10.2174/0929867330666230130121822

Othman, Al, Musaimi., Lucia, Lombardi., Daryl, R., Williams., Fernando, Albericio. (2022). Strategies for Improving Peptide Stability and Delivery. Pharmaceuticals, 15(10):1283-1283. doi: 10.3390/ph15101283

Thomas, Kremsmayr., Aws, Aljnabi., Juan, B., Blanco-Canosa., H, Tran., Nayara, Braga, Emidio., Markus, Muttenthaler. (2022). On the Utility of Chemical Strategies to Improve Peptide Gut Stability. Journal of Medicinal Chemistry, 65(8):6191-6206. doi: 10.1021/acs.jmedchem.2c00094

Karolina, L., Zapadka., Frederik, J., Becher., A., L., Gomes, dos, Santos., Sophie, E., Jackson. (2017). Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus, 7(6):20170030-20170030. doi: 10.1098/RSFS.2017.0030

Jin-Feng, Yao., Hong, Yang., Yan-Zhi, Zhao., Ming, Xue. (2018). Metabolism of Peptide Drugs and Strategies to Improve their Metabolic Stability. Current Drug Metabolism, 19(11):892-901. doi: 10.2174/1389200219666180628171531

Farhan, Taherali., Nerisha, Chouhan., Fanjin, Wang., Sébastien, Lavielle., Laura, E., McCoubrey., Abdul, W, Basit., Vipul, Yadav. (2023). Impact of Peptide Structure on Colonic Stability and Tissue Permeability. Pharmaceutics, doi: 10.3390/pharmaceutics15071956

Michał, Nicze., Maciej, Borówka., Adrianna, Dec., Aleksandra, Niemiec., Łukasz, Bułdak., Bogusław, Okopień. (2024). The Current and Promising Oral Delivery Methods for Protein- and Peptide-Based Drugs. International Journal of Molecular Sciences, doi: 10.3390/ijms25020815

Harshvardhan, Raval., Preeti, C., Sangave. (2024). Nanotechnology Enabled Advances in Oral Delivery of Therapeutic Peptides: Mechanistic Insights for Translation to Clinic. Current nanomedicine, 14 doi: 10.2174/0124681873309964240521074809

Nicole, Colin. (2022). Protein and Peptide Drug Delivery. doi: 10.5772/intechopen.99608

Tejas, Girish, Agnihotri., Richa, Jain., Naga, Jothi, Prasath, V.R.., Pravin, V., Jadhav., Shyam, Sudhakar, Gomte., Aakanchha, Jain. (2024). Protein and peptide delivery through chitin, chitosan, and starch. 169-195. doi: 10.1016/b978-0-443-18925-8.00006-4

Sanjay, Kumar, Singh., G., Dharmamoorthy, Dharmendra, Bhati, Saiphali., Arun, Kumar, Gupta., Pankaj, Bhatt. (2023). Advancements in peptide-based therapeutics: Design, synthesis and clinical applications. Biochemical and Cellular Archives, 23(S1) doi: 10.51470/bca.2023.23.s1.1415

Harsha, Rohira., Aditi, Arora., Prasanjeet, Kaur., Archana, Chugh. (2023). Peptide cargo administration: current state and applications. Applied Microbiology and Biotechnology, 107:3153-3181. doi: 10.1007/s00253-023-12512-5

Jinhai, Huang., Zvi, Fishelson., Chenhui, Wang., Sihe, Zhang. (2023). Cell-Penetrating Peptide-Based Delivery of Macromolecular Drugs: Development, Strategies, and Progress. Advances in Cardiovascular Diseases, doi: 10.3390/biomedicines11071971

Yunfei, Yi., Chan, Feng., Mian, Yu., Lin, Mei., Meiying, Wu., Wei, Tao. (2023). Peptide-based siRNA delivery system for tumor vascular normalization and gene silencing in 4T1 cells. STAR protocols, 4(1):102138-102138. doi: 10.1016/j.xpro.2023.102138

Chinnaraji, Annamalai. (2022). Regulatory aspects of oral peptide delivery. 251-290. doi: 10.1016/b978-0-12-821061-1.00010-1

Carolina, Säll., Upendra, A., Argikar., Kari, R., Fonseca., Constanze, Hilgendorf., Filipe, Lopes., Jens, Riedel., Hilmar, Schiller., Anders, Sonesson., Kenichi, Umehara., Kai, Wang. (2023). Industry Perspective on Therapeutic Peptide Drug–Drug Interaction Assessments During Drug Development: A European Federation of Pharmaceutical Industries and Associations White Paper. Clinical Pharmacology & Therapeutics, 113 doi: 10.1002/cpt.2847

Doris, Zane., Paul, L., Feldman., Tomi, Sawyer., Zhanna, Sobol., Jessica, Hawes., Jessica, Hawes. (2021). Development and Regulatory Challenges for Peptide Therapeutics. International Journal of Toxicology, 40(2):108-124. doi: 10.1177/1091581820977846

N., Pise., Arati, Prabhu., Radhika, Raheja., Illham, Dhala. (2022). Therapeutic Peptides: Unravelling Conformational Dynamics by Systematic Application of Biophysical Techniques.. Current Protein & Peptide Science, 23(9):619-641. doi: 10.2174/1389203723666220908150054

Ivy, A., Kekessie., Katarzyna, Wegner., Isamir, Martinez., Michael, E., Kopach., Timothy, White., Janine, K, Tom., Martin, N., Kenworthy., Fabrice, Gallou., John, Lopez., Stefan, G., Koenig., Philippa, R, Payne., Stefan, Eissler., Balasubramanian, Arumugam., Changfeng, Li., Subha, Mukherjee., Albert, Isidro-Llobet., Olivier, Ludemann-Hombourger., Paul, F., Richardson., Jörg, Kittelmann., D., Sejer, Pedersen., Leendert, J., van, den, Bos. (2024). Process Mass Intensity (PMI): A Holistic Analysis of Current Peptide Manufacturing Processes Informs Sustainability in Peptide Synthesis.. Journal of Organic Chemistry, doi: 10.1021/acs.joc.3c01494

Giuseppina, Sabatino., Ivan, Guryanov., Andrea, Rombecchi., Jacopo, Zanon., Antonio, Ricci., Walter, Cabri., Anna, Maria, Papini., Paolo, Rovero. (2016). Production of peptides as generic drugs: a patent landscape of octreotide.. Expert Opinion on Therapeutic Patents, 26(4):485-495. doi: 10.1517/13543776.2016.1158810

John, J., Nestor. (2007). Peptide and Protein Drugs: Issues and Solutions. 2:573-601. doi: 10.1016/B0-08-045044-X/00050-X

Thimmiah, Bhargavi, Ram., Chien, Chien, Belinda, Tang., Siaw, Fui, Kiew., Sie, Yon, Lau., G., Gobi., Jeevanandam, Jaison., Michael, K., Danquah. (2022). Nanoformulation of Peptides for Pharmaceutical Applications: In Vitro and In Vivo Perspectives. Applied Sciences, 12(24):12777-12777. doi: 10.3390/app122412777

(2022). Nanotechnology in Drug Delivery. 47-73. doi: 10.1007/978-981-19-8050-3_3

(2022). 3D-bioprinted peptide coupling patches for wound healing. Materials today bio, 13:100188-100188. doi: 10.1016/j.mtbio.2021.100188

Charles, W., Peak., Kanwar, Abhay, Singh., Mu'ath, Adlouni., Jeffrey, Chen., Akhilesh, K., Gaharwar. (2019). Printing Therapeutic Proteins in 3D using Nanoengineered Bioink to Control and Direct Cell Migration.. Advanced Healthcare Materials, 8(11):1801553-. doi: 10.1002/ADHM.201801553

.Mitchell, Boyd-Moss., Mitchell, Boyd-Moss., Kate, Fox., Milan, Brandt., David, R., Nisbet., Richard, J., Williams., Richard, J., Williams. (2017). Bioprinting and Biofabrication with Peptide and Protein Biomaterials.. Advances in Experimental Medicine and Biology, 1030:95-129. doi: 10.1007/978-3-319-66095-0_5

Wafaa, Arab., Kowther, Kahin., Kowther, Kahin., Zainab, Khan., Zainab, Khan., Charlotte, A., E., Hauser. (2019). Exploring Nanofibrous Self-assembling Peptide Hydrogels Using Mouse Myoblast Cells for three-dimensional Bioprinting and Tissue Engineering Applications. 5(2):198-198. doi: 10.18063/IJB.V5I2.198

(2023). Data from Phase II Study of Personalized Peptide Vaccination for Previously Treated Advanced Colorectal Cancer. doi: 10.1158/2326-6066.c.6548051

S., Mørk., Signe, Koggersbøl, Skadborg., Benedetta, Albieri., Arianna, Draghi., Kalijn, F., Bol., Mohammad, Kadivar., M., C., Westergaard., J., Stoltenborg, Granhøj., Annie, Borch., Nadia, Viborg, Petersen., Nikolas, Hallberg, Thuesen., Ida, Svahn, Rasmussen., Lars, Vibe, Andreasen., Rebecca, B, Dohn., Christina, Westmose, Yde., Nis, Noergaard., Torben, Lorentzen., Anders, Bundgaard, Soerensen., Daniela, Kleine-Kohlbrecher., Anders, Jespersen., Dennis, Christensen., Jens, Vindahl, Kringelum., Marco, Donia., Sine, Reker, Hadrup., Inge, Marie, Svane. (2024). Dose escalation study of a personalized peptide-based neoantigen vaccine (EVX-01) in patients with metastatic melanoma. Journal for ImmunoTherapy of Cancer, 12 doi: 10.1136/jitc-2024-008817

Tanner, M., Johanns., Elizabeth, A, R, Garfinkle., Alexandra, J., Livingstone., Kaleigh, F., Roberts., Lakshmi, Prakruthi, Rao, Venkata., Joshua, L., Dowling., Michael, R, Chicoine., Ralph, G., Dacey., Gregory, J, Zipfel., Albert, H, Kim., Elaine, R, Mardis., Gavin, P, Dunn. (2024). Integrating multisector molecular characterization into personalized peptide vaccine design for patients with newly diagnosed glioblastoma.. Clinical Cancer Research, doi: 10.1158/1078-0432.ccr-23-3077

Dilip, Kumar, Chanchal., Jitendra, Singh, Chaudhary., Pushpendra, Kumar., Neha, Agnihotri., Prateek, Porwal. (2024). CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine. Current Gene Therapy, 24(3):193-207. doi: 10.2174/0115665232275754231204072320

Khushwant, S., Bhullar., Nan, Shang., Jianping, Wu. (2021). CRISPR–Cas systems in bioactive peptide research. 285-307. doi: 10.1016/B978-0-12-821389-6.00015-7

R., Brazil. (2023). Peptide Nucleic Acids Promise New Therapeutics and Gene Editing Tools. ACS central science, 9(1):3-6. doi: 10.1021/acscentsci.3c00016

Mert, Öktem., Enrico, Mastrobattista., Olivier, G., de, Jong. (2023). Amphipathic Cell-Penetrating Peptide-Aided Delivery of Cas9 RNP for In Vitro Gene Editing and Correction. Pharmaceutics, doi: 10.3390/pharmaceutics15102500

(2023). An Amphipathic Cell-Penetrating Peptide-Aided Delivery of Cas9 RNP for Gene Editing and Correction. doi: 10.20944/preprints202306.1682.v1

Sudeshna, Kar, Sudeshnakar. (2024). Advancement in development of peptide drugs. 70-89. doi: 10.58532/v3becm3ch5

Uttpal, Anand., A., Bandyopadhyay., Niraj, K., Jha., José, M., Pérez, de, la, Lastra., Abhijit, Dey. (2022). Translational aspect in peptide drug discovery and development: An emerging therapeutic candidate. Biofactors, 49:251-269. doi: 10.1002/biof.1913

Takashi, Misawa., Yosuke, Demizu. (2023). Developmental Trends of Peptide Drugs and Their Quality Assessment using Secondary Structure Analysis. Chemistryselect, 8(11) doi: 10.1002/slct.202300408

Liwei, Chang., Arup, Mondal., Bhumika, Singh., Yisel, Martínez‐Noa., Alberto, Perez. (2023). Revolutionizing peptide‐based drug discovery: Advances in the post‐AlphaFold era. doi: 10.1002/wcms.1693

Aneta, Myšková., David, Sýkora., J., Kuneš., Lenka, Maletínská. (2024). Lipidization as a Tool for Peptide Drug Development. doi: 10.54779/chl20240263

Downloads

Published

2024-08-25

How to Cite

Kanojia, A., Singh, S., Rai, V., & Yadav, A. (2024). Peptide-Based Drugs: Development and Therapeutic Applications. Journal for Research in Applied Sciences and Biotechnology, 3(4), 54–68. https://doi.org/10.55544/jrasb.3.4.7

Most read articles by the same author(s)

1 2 > >>