The Ultimate Herb for Overall Wellness - A Comprehensive Review
DOI:
https://doi.org/10.55544/jrasb.4.2.9Keywords:
Ayurveda, Holy basil, lifestyle, sanctum Ocimum, stressAbstract
Holy basil, or Tulsi, is a plant native to the Indian subcontinent that is highly valued in Siddha and Ayurvedic medicine for its therapeutic properties. Tulsi has been shown to shield organs and tissues from physical stressors such as extended physical activity, ischemia, physical restraint, exposure to cold, and loud noises, as well as chemical stressors including industrial pollution and heavy metals. Additionally, Tulsi has been demonstrated to mitigate psychological stress by improving memory and cognitive performance and by lowering blood pressure, cholesterol, and blood glucose levels. It has also been demonstrated to mitigate metabolic stress by having anxiolytic and antidepressant qualities. The predominant cause of global morbidity and mortality is lifestyle-related chronic diseases, many of which can be addressed through Ayurveda with its focus on healthy lifestyle practices and regular consumption of adaptogenic herbs. Scientific studies are increasingly verifying the health benefits of Tulsi (Ocimum sanctum Linn), the most important plant in Ayurveda. Tulsi has a special mix of pharmacological activities that have been shown to alleviate physical, physiological, metabolic, and psychological stress. The broad-spectrum antimicrobial activity of Tulsi, which includes activity against a variety of human and animal pathogens, indicates that it can be used as a mouthwash, hand sanitiser, and water purifier in addition to being used in wound healing, animal rearing, food preservation, the preservation of herbal raw materials, and traveller’s health issues.
Downloads
References
Bast F, Rani P, Meena D. Chloroplast DNA phylogeography of holy basil (Ocimum tenuiflorum) in Indian subcontinent. Scientific World Journal. 2014,2014, 847–482.
Jamshidi N, Cohen MM. The clinical efficacy and safety of tulsi in humans: A systematic review of the literature. Evid Based Complement Alternat Med. 2017, 20179217567.
Dr. Umme Amarah, Dr Laxmikanth Chatra, Dr Prashanth Shenai, Dr Veena K. M., Dr Rachana V. Prabhu and Dr Vagish Kumar., Miracle Plant -Tulsi., World Journal of Pharmacy and Pharmaceutical Sciences. 2017, 6(1),2017, 1567-1581.
KP Sampath Kumar, Debjit Bhowmik, Biswajit, Chiranjib, Pankaj and KK Tripathi Margret Chandira., Traditional Indian Herbal Plants Tulsi and Its Medicinal Importance Research Journal of Pharmacognosy and Phytochemistry. 2010, 2(2), 103- 108.
Chatterjee, Gautam (2001). Sacred Hindu Symbols. Abhinav Publications. Pp. 93. ISBN 9788170173977.Simoons.
Kumar PK. Pharmacological actions of Ocimum Sanctum. Review article Int. J. Advnc. Pharm. Bio. Chem. 2012, 1(3), 406-414.
Joseph B. Ethan pharmacological and photochemical Aspects of Ocimum sanctum Linn. The elixir of life. Brit. J Pharma. Res. 2013, 3(2), 273-29.
Kress W.J., Wurdack K.J., Zimmer E.A., Weigt L.A., Janzen D.H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA. 2005, 102,8369– 8374.
Joshi K., Chavan P., Warude D., Patwardhan B. Molecular markers in herbal drug technology. Curr. Sci. 2004, 87,159–165.
De Mattia F.D., Bruni I., Galimberti A., Cattaneo F., Casiraghi M., Labra M. A comparative study of the different DNA barcoding markers for the identification of some members of Lamiaceae. Food Res. Int. 2011, 44, 693–702.
Rai P.S., Bellampalli R., Dobriyal R.M., Agarwal A., Satyamoorthy K., Narayana A. DNA barcoding of authentic and substitute samples of herb of the family Asparagaceae and Asclepiadaceae based on the ITS2 region. J. Ayurveda Integr. Med. 2012, 3,136–140.
Medicinal Plants. 2004. National Institute of Industrial Research. P. 320
Gurav, T.P.; Dholakia, B.B.; Giri, A.P. A glance at the chemodiversity of Ocimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil. Phytochem. Rev. 2022, 21, 879–913
Rengarajan, T.; Nandakumar, N.; Rajendran, P.; Haribabu, L.; Nishigaki, I.; Balasubramanian, M.P. D-pinitol promotes apoptosis in MCF-7 cells via induction of p53 and Bax and inhibition of Bcl-2 and NF-κB. Asian Pac. J. Cancer Prev. 2014, 15, 1757–1762.
Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.D.M.; Segura- Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, Thyme, and Other Plant Sources: Health and Potential Uses. Phytother. Res. 2018, 32, 1688–1706.
Anusmitha, K.M.; Aruna, M.; Job, J.T.; Narayanankutty, A.; Pb, B.; Rajagopal, R.; Alfarhan, A.; Barcelo, D. Phytochemical analysis, antioxidant, anti-inflammatory, anti- genotoxic, and anticancer activities of different Ocimum plant extracts prepared by ultrasound-assisted method. Physiol. Mol. Plant Pathol. 2021, 117, 101746.
Khalil, A.A.; ur Rahman, U.; Khan, M.R.; Sahar, A.; Mehmood, T.; Khan, M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Adv. 2017, 7, 32669–32681.
Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689.
B Aggarwal, B.; Prasad, S.; Reuter, S.; Kannappan, R.; R Yadav, V.; Park, B.; Hye, K.J.; Gupta, S.; Phromnoi, K.; Sundaram, C.; et al. Identification of novel anti- inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “reverse pharmacology” and “bedside to bench” approach. Curr. Drug Targets. 2011, 12, 1595–1653.
Kamatou, G.P.; Vermaak, I.; Viljoen, A.M. Eugenol—From the remote Maluku Islands to the international market place: A review of a remarkable and versatile molecule. Molecules. 2012, 17, 6953–6981.
Yadav, M.K.; Chae, S.W.; Im, G.J.; Chung, J.W.; Song, J.J. Eugenol: A phyto- compound effective against methicillin-resistant andmethicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS ONE. 2015, 10, e0119564.
Legault, J.; Pichette, A. Potentiating Effect of β-Caryophyllene on Anticancer Activity of α-Humulene, Isocaryophyllene and Paclitaxel. J. Pharm. Pharmacol. 2010, 59, 1643–1647.
Alma, M.H.; Mavi, A.; Yildirim, A.; Digrak, M.; Hirata, T. Screening Chemical Composition and in Vitro Antioxidant and Antimicrobial Activities of the Essential Oils from Origanum Syriacum L. Growing in Turkey. Biol. Pharm. Bull. 2003, 26, 1725–1729.
Zahran, E.M.; Abdelmohsen, U.R.; Ayoub, A.T.; Salem, M.A.; Khalil, H.E.; Desoukey, S.Y.; Fouad, M.A.; Kamel, M.S. Metabolic Profiling, Histopathological Anti-Ulcer Study, Molecular Docking and Molecular Dynamics of Ursolic Acid Isolated from Ocimum Forskolei Benth. (Family Lamiaceae). South Afr. J. Bot. 2020, 131, 311–319.
Carvalho, R.P.R.; Lima, G.D. de A.; Ribeiro, F.C.D.; Ervilha, L.O.G.; Oliveira, E.L.; Viana, A.G.A.; Machado-Neves, M. Eugenol Reduces Serum Testosterone Levels and Sperm Viability in Adult Wistar Rats. Reprod. Toxicol. 2022, 113, 110–119.
Al-Fatlawi, A.A.; Ahmad, A. Cytotoxicity and Pro-Apoptotic Activity of Carvacrol on Human Breast Cancer Cell Line MCF-7. World J. Pharm. Sci. 2014, 2, 1134–1415.
Yehya, A.H.; Asif, M.; Majid, A.M.A.; Oon, C.E. Complementary effects of Orthosiphon stamineus standardized ethanolic extract and rosmarinic acid in combination with gemcitabine on pancreatic cancer. Biomed. J. 2020, 44, 694–708.
Kim, S.S.; Oh, O.J.; Min, H.Y.; Park, E.J.; Kim, Y.; Park, H.J.; Han, Y.N.; Lee, S.K. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264. 7 cells. Life Sci. 2003, 73, 337–348.
Mari, A.; Mani, G.; Nagabhishek, S.N.; Balaraman, G.; Subramanian, N.; Mirza, F.B.; Sundaram, J.; Thiruvengadam, D. Carvacrol Promotes Cell Cycle Arrest and Apoptosis through PI3K/AKT Signaling Pathway in MCF-7 Breast Cancer Cells. Chin. J. Integr. Med. 2021, 27, 680–687.
Nunes, S.R.R.P.; Madureira, A.R.; Campos, D.; Sarmento, B.; Gomes, A.M.; Pintado, M.M.; Reis, F. Therapeutic and Nutraceutical Potential of Rosmarinic Acid— Cytoprotective Properties and Pharmacokinetic Profile. Crit. Rev. Food Sci. Nutr. 2015, 57, 1799–1806.
Magalhães, D.B.; Castro, I.; Lopes-Rodrigues, V.; Pereira, J.M.; Barros, L.; Ferreira, I.C.F.R.; Xavier, C.P.R.; Vasconcelos, M.H. Melissa officinalis L. Ethanolic extract inhibits the growth of a lung cancer cell line by interfering with the cell cycle and inducing apoptosis. Food Funct. 2018, 9, 3134–3142.
Petersen, M. Rosmarinic acid. Phytochemistry 2003, 62, 121–125.
Alagawany, M.; El-Hack, M.E.A.; Farag, M.R.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Rosmarinic acid: Modes of action, medicinal values and health benefits. Anim. Health Res. Rev. 2017, 18, 167–176.
Zhao, J.; Xu, L.; Jin, D.; Xin, Y.; Tian, L.; Wang, T.; Zhao, D.; Wang, Z.; Wang, J. Rosmarinic Acid and Related Dietary Supplements: Potential Applications in the Prevention and Treatment of Cancer. Biomolecules. 2022, 12, 1410.
Liu, Y.; Xu, X.; Tang, H.; Pan, Y.; Hu, B.; Huang, G. Rosmarinic acid inhibits cell proliferation, migration, and invasion and induces apoptosis in human glioma cells. Int. J. Mol. Med. 2021, 47, 67.
Utispan, K.; Niyomtham, N.; Yingyongnarongkul, B.; Koontongkaew, S. Ethanolic extract of Ocimum sanctum leaves reduced invasion and matrix metalloproteinase activity of head and neck cancer cell lines. Asian Pac. J. Cancer Prev. 2020, 21, 363.
Elansary, H.O.; Mahmoud, E.A. In vitro antioxidant and antiproliferative activities of six international basil cultivars. Nat. Prod. Res. 2015, 29, 2149–2154.
Tai, J.; Cheung, S.; Wu, M.; Hasman, D. Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine. 2012, 19, 436–443.
Scheckel, K.A.; Degner, S.C.; Romagnolo, D.F. Rosmarinic acid antagonizes activator protein-1–dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines. J. Nutr. 2008, 138, 2098–2105.
Han, Y.H.; Kee, J.Y.; Hong, S.H. Rosmarinic acid activates AMPK to inhibit metastasis of colorectal cancer. Front. Pharmacol. 2018, 9, 68.
Jung, C.H.I.Y.; Kim, S.-Y.; Lee, C. Carvacrol Targets AXL to Inhibit Cell Proliferation and Migration in Non-Small Cell Lung Cancer Cells. Anticancer Res. 2018, 38, 279.
Singh, P.; Mishra, S.K.; Noel, S.; Sharma, S.; Rath, S.K. Acute exposure of apigenin induces hepatotoxicity in Swiss mice. PLoS ONE 2012, 7, e31964.
Kaur, P.; Shukla, S.; Gupta, S. Plant flavonoid apigenin inactivates Akt to trigger apoptosis in human prostate cancer: An in vitro and in vivo study. Carcinogenesis 2008, 29, 2210–2217.
Xu, M.; Wang, S.; Song, Y.U.; Yao, J.; Huang, K.; Zhu, X. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β- catenin signaling pathway. Oncol. Lett. 2016, 11, 3075–3080.
Hu, W.J.; Liu, J.; Zhong, L.K.; Wang, J. Apigenin enhances the antitumor effects of cetuximab in nasopharyngeal carcinoma by inhibiting EGFR signaling. Biomed. Pharmacother. 2018, 102, 681–688.
Cao, H.-H.; Chu, J.-H.; Kwan, H.Y.; Su, T.; Yu, H.; Cheng, B.C.-Y.; Fu, X.-Q.; Guo, H.; Li, T.; Tse, A.K.-W.; et al. Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma. Sci. Rep. 2016, 6, 21731.
Granato, M.; GilardiniMontani, M.S.; Santarelli, R.; D’Orazi, G.; Faggioni, A.; Cirone, M. Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death. J. Exp. Clin. Cancer Res. 2017, 36, 1–9.
Lim, W.; Park, S.; Bazer, F.W.; Song, G. Apigenin reduces survival of choriocarcinoma cells by inducing apoptosis via the PI3K/AKT and ERK1/2 MAPK pathways. J. Cell Physiol. 2016, 231, 2690–2699.
Shao, H.; Jing, K.; Mahmoud, E.; Huang, H.; Fang, X.; Yu, C. Apigenin Sensitizes Colon Cancer Cells to Antitumor Activity of ABT-263. Mol. Cancer Ther. 2013, 12, 2640–2650.
Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.D.M.; Segura- Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, Thyme, and Other Plant Sources: Health and Potential Uses. Phytother. Res. 2018, 32, 1688–1706.
Dos Santos, C.P.; Pinto, J.A.O.; dos Santos, C.A.; Cruz, E.M.O.; de Fátima Arrigoni- Blank, M.; Andrade, T.M.; de Alexandria Santos, D.; Alves, P.B.; Blank, A.F. Harvest Time and Geographical Origin Affect the Essential Oil of LippiaGracilis Schauer. Ind. Crops Prod. 2016, 79, 205–210.
Elbe, H.; Yigitturk, G.; Cavusoglu, T.; Baygar, T.; OzgulOnal, M.; Ozturk, F. Comparison of Ultrastructural Changes and the Anticarcinogenic Effects of Thymol and Carvacrol on Ovarian Cancer Cells: Which Is More Effective? UltrastructPathol 2020, 44, 193–202.
Koparal, A.T.; Zeytinoğlu, M. Effects of Carvacrol on a Human Non-Small Cell Lung Cancer (NSCLC) Cell Line, A549. In Animal Cell Technology: Basic & Applied Aspects; Springer: Dordrecht, The Netherlands, 2003, 207–211.
Ozkan, A.; Erdogan, A. A Comparative Study of the Antioxidant/Prooxidant Effects of Carvacrol and Thymol at Various Concentrations on Membrane and DNA of Parental and Drug Resistant H1299 Cells. Nat. Prod. Commun. 2012, 7, 1934578X1200701.
Horvathova, E.; Navarova, J.; Galova, E.; Sevcovicova, A.; Chodakova, L.; Snahnicanova, Z.; Melusova, M.; Kozics, K.; Slamenova, D. Assessment of Antioxidative, Chelating, and DNA-Protective Effects of Selected Essential Oil Components (Eugenol, Carvacrol, Thymol, Borneol, Eucalyptol) of Plants and Intact Rosmarinus Officinalis Oil. J Agric Food Chem. 2014, 62, 6632–6639.
Özkan, A.; Erdogan, A. A Comparative Evaluation of Antioxidant and Anticancer Activity of Essential Oil from OriganumOnites (Lamiaceae) and Its Two Major Phenolic Components. Turk. J. Biol. 2011.
Sanchez, A.; Tripathy, D.; Yin, X.; Luo, J.; Martinez, J.; Grammas, P. Pigment Epithelium-Derived Factor (PEDF) Protects Cortical Neurons in Vitro from Oxidant Injury by Activation of Extracellular Signal-Regulated Kinase (ERK) ½ and Induction of Bcl-2. Neurosci. Res. 2012, 72, 1–8.
Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Pichardo, S.; Moreno, F.J.; Bermúdez, J.M.; Aucejo, S.; Cameán, A.M. Cytotoxicity and Morphological Effects Induced by Carvacrol and Thymol on the Human Cell Line Caco-2. Food Chem. Toxicol. 2014, 64, 281–290.
Calibasi Kocal, G.; Pakdemirli, A. Antiproliferative Effects of Carvacrol on Neuroblastoma Cells. J. Dr. Behcet Child. Hosp. 2020.
Fan, K.; Li, X.; Cao, Y.; Qi, H.; Li, L.; Zhang, Q.; Sun, H. Carvacrol Inhibits Proliferation and Induces Apoptosis in Human Colon Cancer Cells. Anticancer Drugs 2015, 26, 813–823.
Jamali, T.; Kavoosi, G.; Safavi, M.; Ardestani, S.K. In-Vitro Evaluation of Apoptotic Effect of OEO and Thymol in 2D and 3D Cell Cultures and the Study of Their Interaction Mode with DNA. Sci. Rep. 2018, 8, 15787.
Li, L.; He, L.; Wu, Y.; Zhang, Y. Carvacrol Affects Breast Cancer Cells through TRPM7 Mediated Cell Cycle Regulation. Life Sci. 2021, 266, 118894.
Ito M, Murakami K, Yoshino M. Antioxidant action of eugenol compounds: role of metal ion in the inhibition of lipid peroxidation. Food Chem Toxicol. 2005, 43, 461– 466.
Ojha S.; Al Taee H.; Goyal S.; Mahajan U. B.; Patil C. R.; Arya D. S.; Rajesh M. Cardioprotective potentials of plant-derived small molecules against doxorubicin associated cardiotoxicity. Oxid. Med. Cell. Longevity 2016, 2016, 5724973.
Ojha S.; Javed H.; Azimullah S.; Haque M. E. Β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease. Mol. Cell. Biochemistry 2016, 418, 59–70.
Al-Taee H.; Azimullah S.; Meeran M. F. N.; Alaraj Almheiri M. K.; Al Jasmi R. A.; Tariq S.; Ab Khan M.; Adeghate E.; Ojha S. Β-caryophyllene, a dietary phytocannabinoid attenuates oxidative stress, inflammation, apoptosis and prevents structural alterations of the myocardium against doxorubicin-induced acute cardiotoxicity in rats: An in vitro and in vivo study. Eur. J. Pharmacol. 2019, 858, 172467.
Patil K. R.; Goyal S. N.; Sharma C.; Patil C. R.; Ojha S. Phytocannabinoids for cancer therapeutics: recent updates and future prospects. Curr. Med. Chem. 2015, 22, 3472–3501.
Parisotto-Peterle J.; Bidone J.; Lucca L. G.; Araújo G. D. M. S.; Falkembach M. C.; da Silva Marques M.; Horn A. P.; dos Santos M. K.; da Veiga V. F. Jr.; Limberger R. P.;
Teixeira H. F.; Dora C. L.; Koester L. S. Healing activity of hydrogel containing nanoemulsified β-caryophyllene. Eur. J. Pharm. Sci. 2020, 148.
Sharma C.; Kaabi J. M.; Nurulain S. M.; Goyal S. N.; Kamal M. A.; Ojha S. Polypharmacological properties and therapeutic potential of β-caryophyllene: a dietary phytocannabinoid of pharmaceutical promise. Curr. Pharm. Des. 2016, 22, 3237–3264.
Miastkowska M.; Kulawik-Pioro A.; Lason E.; Sliwa K.; Malinowska M.A.; Sikora E.; Kantyka T.; Bielecka E.; Maksylewicz A.; Klimaszewska E., Topical Formulations Based on Ursolic Acid-Loaded Nanoemulgel with Potential Application in Psoriasis Treatment. Pharmaceutics. 2023, 15,2559.
Kashyap D.; Sharma A.; Tuli H.S.; Punia S, Sharma AK. Ursolic acid and oleanolic acid: pentacyclic terpenoids with promising antiinflammatory activities. Recent Pat Inflamm Allergy Drug Discov. 2016, 10, 21–33.
Liobikas J.; Majiene D.; Trumbeckaite S.; Kursvietiene L.; Masteikova R.; Kopustinskiene DM.; Savickas A.; Bernatoniene J. Uncoupling and antioxidant effects of ursolic acid in isolated rat heart mitochondria. J Nat Prod. 2011, 74,1640–1644.
Shishodia S.; Majumdar S.; Banerjee S.; Aggarwal BB. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 2003, 63, 4375–4383.
Jayaprakasam B.; Olson LK.;Schutzki RE.; Tai MH.; Nair MG. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas) J Agric Food Chem. 2006, 54, 243–248.
Yu SG.; Zhang CJ.; Xu XE, Sun JH, Zhang L, Yu PF. Ursolic acid derivative ameliorates streptozotocin-induced diabestic bone deleterious effects in mice. Int J Clin Exp Pathol. 2015, 8, 3681–3690.
Senthil S.; Chandramohan G.; Pugalendi KV. Isomers (oleanolic and ursolic acids) differ in their protective effect against isoproterenolinduced myocardial ischemia in rats. Int J Cardiol. 2007, 119,131–133.
Wang Y.; He Z.; Deng S. Ursolic acid reduces the metalloprotease/ anti- metalloprotease imbalance in cerebral ischemia and reperfusion injury. Drug Des DevelTher. 2016, 10, 1663–1674.
Scarpati M.L.; Oriente G. Isolamento e costituzionedell’ acidorosmarinico (dal rosmarinus off.) Ric. Sci. 1958, 28, 2329–2333.
ANVISA. Guia de Estabilidade de Produtos Cosméticos. Volume 1. Agência Nacional de Vigilância Sanitária; Brasilia, Brasil. 2004
Park DH.; Park SJ.; Kim JM.; et al.. Subchronic administration of rosmarinic acid, a natural prolyl oligopeptidase inhibitor, enhances cognitive performances. Fitoterapia 2010, 81, 644–8.
Wang M.; Firrman J.; Liu L.; Yam K. A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. BioMed Res. Int. 2019, 2019,7010467.
Mukherjee A.; Waters A.K.; Kalyan P.; Achrol A.S.;Kesari S.; Yenugonda V.M. Lipid- polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int. J. Nanomed. 2019, 14,1937–1952.
Patel D.; Shukla S.; Gupta S. Apigenin and cancer chemoprevention: Progress, potential and promise (Review) International Journal of Oncology. 2007, 30(1), 233– 245.
Fenaroli G. Fenaroli’s handbook of flavor ingredients. 3rd ed. Boca Raton, Fla: CRC Press, Inc.; 1995.
Sigma Aldrich Merck. [(accessed on 20 July 2021)]. Available online: PubChem. [(accessed on 20 July 2021)]; Available online:
Kuo P.J.; Hung T.F.; Lin C.Y.; Hsiao H.Y.; Fu M.W.; Hong P.D.; Chiu H.C.; Fu E.
Carvacrol ameliorates ligation-induced periodontitis in rats. J. Periodontol. 2017, 88, e120–e128.
Vats V.; Yadav SP.; Grover JK. Ethanolic extract of Ocimum sanctum leaves partially attenuates sterptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. J Ethnopharmacol. 2004, 90,155–60.
Madhuri S.; Pandey G. Effect of ProImmu, a herbal drug on estrogen caused uterine and ovarian cytotoxicity. Biomed. 2010,5(1), 57-62.
Pandey G. An overview on certain anticancer natural products. J Pharm Res 2009, 2(12), 1799-1803.
Pandey Govind, Madhuri S. Medicinal plants: Better remedy for neoplasm. Indian Drug 2006, 43(11), 869-874.
Kathiresan K.; Guanasekan P.; Rammurthy N.; Govidswami S. Anticancer activity of Ocimum sanctum. Pharmaceutical Biology. 1999, 37(4), 285-290.
Aruna K.; Sivaramakrishnan VM. Anticarcinogenic effects of some Indian plants products. Food Chem Toxicol. 1992, 30, 953.
Prashar R.; Kumar A.; Banerjee S.; Rao AR. Chemopreventive action by an extract from Ocimum sanctum on mouse skin papillomagenesis and its enhancement of skin glutathione-S-transferase activity and acid soluble sulfhydryl level. Anticancer Drugs. 1994, 5, 567-572.
Prashar R.; Kumar A. Chemopreventive action of Ocimum sanctum on 2, 12- dimethylbenz(a) anthracene (DMBA) induced papillomagenesis in the skin of mice. Int J Pharmacog1995, 33,181.
Prakash J.; Gupta SK.; Singh N.;Kochupillai V.; Gupta YK. Antiproliferative and chemopreventive activity of Ocimum sanctum Linn. Int JMed Biol Environ. 1999, 27, 165.
Prakash J.; Gupta SK. Chemopreventive activity of Ocimum sanctum seed oil. J Ethnopharmacol.2000,72(1-2),29-34.
Uma Devi P.; Gonasoundari A. Radioprotective effect of leaf extract of Indian Medicinal Plant Ocimum sanctum. Indian J Exp Biol. 1995,33, 205.
Uma Devi P.; Gonasoundari A.; Vrinda B.; Srinivasan KK; Unnikrishanan M.K. Radiation protection by the Ocimum sanctum flavonoids orientin and vicenin: Mechanism of action. Radiat Res.2000, 154(4), 455-460.
Gonasoundari A.; Uma Devi P, Rao BSS. Enhancement of bone marrow radioprotection and reduction of WR-2721 toxicity by Ocimum sanctum. Mutat Res 1998, 397, 303.
Gholap S.; Kar A. Hypoglycemic effects of some plant extracts are possibly mediated through inhibition in corticosteroid concentration. Pharmazie. 2004, 59,876–8.
Vats V.; Yadav SP.; Grover JK. Ethanolic extract of Ocimum sanctum leaves partially attenuates sterptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. J Ethnopharmacol. 2004, 90,155–60.
Rai V.;Iyer U.; Mani UV. Effect of Tulasi (Ocimum sanctum) leaf power supplementation on blood sugar levels, serum lipids and tissue lipids in diabetic rats. Plant Foods Hum Nutr. 1997,50,9–16.
Chattopadhyay RR. Hypoglycemic effect of Ocimum sanctum leaf extract in normal and streptozotocin diabetic rats. Indian J Exp Biol. 1993,31,891–3.
Sood S.; Narang D.; Thomas MK.; Gupta YK.; Maulik SK. Effect of Ocimum sanctum Linn. on cardiac changes in rats subjected to chronic restraint stress. J Ethnopharmacol. 2006, 108,423–7.
Sood S.; Narang D.; Dinda AK.; Maulik SK. Chronic oral administration of Ocimum sanctum Linn. augments cardiac endogenous antioxidants and prevents isoproterenol- induced myocardial necrosis in rats. J Pharm Pharmacol. 2005,57,127–33.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Deepak Kumar Yadav, Anu Sharma, Vidhi Grover, Garima Mathur

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.