Non-Linear λ-Jordan Triple Derivation on Prime Algebras

Authors

  • Ahmad Ramin Rahnaward Assistant Professor, Department of General Mathematics, Faculty of Mathematics, Kabul University, AFGHANISTAN.
  • Shuja Kaheshzad Assistant Professor, Department of Mathematics, Faculty of Education, Badghis University AFGHANISTAN.
  • Sebghatullah Rahimi Assistant Professor, Department of Mathematics, Faculty of Education, Nimroz Institute of Higher Education, AFGHANISTAN.

DOI:

https://doi.org/10.55544/jrasb.3.5.31

Keywords:

Prime Algebras, λ-Jordan Triple Derivation, Non-Linearity

Abstract

Let A be a prime ∗−algebra and Φ a λ−Jordan triple deriva- tion on A, that is, for every A, B, C ∈ A, Φ(A B) = Φ(A) ⋄ B + A ⋄ Φ(B) wher A λ B = AB + λBA such that a real scalar |λ| ̸= 0, 1, and Φ is addi- tive. moreover, if Φ(I) and Φ(il) are selfadjiont then Φ is a ∗−derivation

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Z. Bai and S. Du, The structure of non-linear Lie derivations on factor von Neumann algebras, Lin. Alg. Appl. 436 (2012), 2701–2708.

J. Cui and C.K. Li, Maps preserving product XY Y X∗ on factor von Neumann algebras, Lin. Alg.Appl. 431 (2009), 833-842.

Y. Friedman and J. Hakeda, Additivity of quadratic maps, Publ. Res. Inst. Maht. Sci. 24 (1988), 707-722.

D. Huo, B. Zheng and H. Liu, Nonlinear maps preserving Jordan triple η products, J. Math. Appl. 430 (2015), 830-844.

C. Li and F. Lu, Nonlinear maps preserving the Jordan triple 1 product on von Neumann algebras, Compl. Anal. Oper. Th. 11 (2017), 109-117.

C. Li, F. Lu and X. Fang, Nonlinear ξ Jordan derivations on von Neumann algebras, Lin. Multilin. Alg. 62 (2014), 466- 473.

Nonlinear mappings preserving productXY + Y X∗ on factor von Neumann algebras, Lin. Alg. Appl. 438 (2013), 2339-2345.

C. Li, F. Lu and T. Wang, Nonlinear maps preserving the Jordan triple product on von Neumann algebras, Ann. Funct. Anal. 7 (2016), 496-507.

C. Li, F Zhao and Q. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sinica 32 (2016), 821-830.

L. Molnar, A condition for a subspace of B(H) to be an ideal, Lin. Alg. Appl. 235 (1996), 229-234.

A. Taghavi, V. Darvish and H. Rohi, Additivity of maps preserving products AP PA∗

on C∗ algebras, Math. Slov. 67 (2017), 213-220.

A. Taghavi, M. Razeghi, M. Nouri and V. Darvish, Maps preserving triple product A∗B +BA∗ on algebras, Asian-European J. Math. 12 (2019).

A. Taghavi, H. Rohi and V. Darvish, Non-linear Jordan derivations on von Neumann algebras, Lin. Multilin. Alg. 64 (2016), 426-439.

W. Yu and J Zhang, Nonlinear Lie dervitions on factor von Neumann algebras, Lin. Alg. 437 (2012), 1979-1991.

Downloads

Published

2024-11-12

How to Cite

Rahnaward, A. R., Kaheshzad, S., & Rahimi, S. (2024). Non-Linear λ-Jordan Triple Derivation on Prime Algebras. Journal for Research in Applied Sciences and Biotechnology, 3(5), 303–306. https://doi.org/10.55544/jrasb.3.5.31