Non-Linear λ-Jordan Triple Derivation on Prime Algebras
DOI:
https://doi.org/10.55544/jrasb.3.5.31Keywords:
Prime Algebras, λ-Jordan Triple Derivation, Non-LinearityAbstract
Let A be a prime ∗−algebra and Φ a λ−Jordan triple deriva- tion on A, that is, for every A, B, C ∈ A, Φ(A ⋄ B) = Φ(A) ⋄ B + A ⋄ Φ(B) wher A ⋄λ B = AB∗ + λBA such that a real scalar |λ| ̸= 0, 1, and Φ is addi- tive. moreover, if Φ(I) and Φ(il) are selfadjiont then Φ is a ∗−derivation
Downloads
Metrics
References
Z. Bai and S. Du, The structure of non-linear Lie derivations on factor von Neumann algebras, Lin. Alg. Appl. 436 (2012), 2701–2708.
J. Cui and C.K. Li, Maps preserving product XY Y X∗ on factor von Neumann algebras, Lin. Alg.Appl. 431 (2009), 833-842.
Y. Friedman and J. Hakeda, Additivity of quadratic maps, Publ. Res. Inst. Maht. Sci. 24 (1988), 707-722.
D. Huo, B. Zheng and H. Liu, Nonlinear maps preserving Jordan triple η products, J. Math. Appl. 430 (2015), 830-844.
C. Li and F. Lu, Nonlinear maps preserving the Jordan triple 1 product on von Neumann algebras, Compl. Anal. Oper. Th. 11 (2017), 109-117.
C. Li, F. Lu and X. Fang, Nonlinear ξ Jordan derivations on von Neumann algebras, Lin. Multilin. Alg. 62 (2014), 466- 473.
Nonlinear mappings preserving productXY + Y X∗ on factor von Neumann algebras, Lin. Alg. Appl. 438 (2013), 2339-2345.
C. Li, F. Lu and T. Wang, Nonlinear maps preserving the Jordan triple product on von Neumann algebras, Ann. Funct. Anal. 7 (2016), 496-507.
C. Li, F Zhao and Q. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sinica 32 (2016), 821-830.
L. Molnar, A condition for a subspace of B(H) to be an ideal, Lin. Alg. Appl. 235 (1996), 229-234.
A. Taghavi, V. Darvish and H. Rohi, Additivity of maps preserving products AP PA∗
on C∗ algebras, Math. Slov. 67 (2017), 213-220.
A. Taghavi, M. Razeghi, M. Nouri and V. Darvish, Maps preserving triple product A∗B +BA∗ on algebras, Asian-European J. Math. 12 (2019).
A. Taghavi, H. Rohi and V. Darvish, Non-linear Jordan derivations on von Neumann algebras, Lin. Multilin. Alg. 64 (2016), 426-439.
W. Yu and J Zhang, Nonlinear Lie dervitions on factor von Neumann algebras, Lin. Alg. 437 (2012), 1979-1991.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ahmad Ramin Rahnaward, Shuja Kaheshzad, Sebghatullah Rahimi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.