Nanotechnology Based Therapeutic Approach in Alzheimer's

Authors

  • Md. Samiullah Department of Pharmacy, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, INDIA.
  • Kajal Chauhan Department of Pharmacy, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, INDIA.
  • Dr. K. Manimekalai Assistant Professor, Hindusthan College of Arts and Science Coimbatore, Tamil Nadu, INDIA.
  • S. Hameedullah Sherief Assistant Professor, PG and Research Department of Microbiology, Sadakathullah Appa College, Tirunelveli, Tamil Nadu, INDIA.
  • Maulik K. Pandya Department of Pharmaceutical Chemistry, Parul institute of Pharmacy & Research, Parul University, Vadodara, Gujarat, INDIA.
  • Soaib Ahmed Department of Pharmaceutical Quality Assurance, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, 700114, West Bengal, INDIA.
  • Roushan Bhaskar Department of Pharmacology, St. Soldier Institute of Pharmacy, Jalandhar, Punjab, INDIA.
  • Jay Prakash Clinical Pharmacologist, Paras Health Gurugram, INDIA.

DOI:

https://doi.org/10.55544/jrasb.3.3.24

Keywords:

Nanotechnology, Alzheimer’s disease, Nanoparticle, Liposome

Abstract

Alzheimer's disease is a neurodegenerative disorder that ultimately results from the accumulation of beta-amyloid plaques in the brain. The Alzheimer's disease cannot be prevented or cured at this time, and there is no recognised alternative. The medicinal solutions that are currently available can merely slow down its development. However, nanotechnology has demonstrated its applications in the medical field, and it demonstrates a great deal of promise in the treatment of Alzheimer's disease. In particular, it has shown significant promise in the detection of the condition and the development of an alternative technique to cure it. It is necessary for the medication delivery system to have the capability of penetrating and crossing the blood-brain barrier in order to accomplish this need. On the other hand, greater research is necessary in order to discover and overcome these limitations, which have the potential to improve drug absorption while simultaneously reducing toxicity and adverse effects. Certain nanotechnology-based techniques to treating Alzheimer's disease include regenerative medicine, neuroprotection, and stem cell regeneration. These are just few of the emerging approaches. This article's goal is to take a look at nanotechnology from every angle, including its advantages and disadvantages and how it's helping with neurodegenerative disease research and therapy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Breijyeh, Z., & Karaman, R. (2020). Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules (Basel, Switzerland), 25(24), 5789. https://doi.org/10.3390/molecules25245789

Cho, H. S., Huang, L. K., Lee, Y. T., Chan, L., & Hong, C. T. (2018). Suboptimal baseline serum vitamin B12 is associated with cognitive decline in people with Alzheimer’s disease undergoing cholinesterase inhibitor treatment. Frontiers in Neurology, 9, 325.

Jatoi, S., Hafeez, A., Riaz, S. U., Ali, A., Ghauri, M. I., & Zehra, M. (2020). Low vitamin B12 levels: an underestimated cause of minimal cognitive impairment and dementia. Cureus, 12(2).

Schachter, A. S., & Davis, K. L. (2000). Alzheimer's disease. Dialogues in clinical neuroscience, 2(2), 91-100.

Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., ... & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The lancet, 396(10248), 413-446.

Yiannopoulou, K. G., & Papageorgiou, S. G. (2020). Current and future treatments in Alzheimer disease: an update. Journal of central nervous system disease, 12, 1179573520907397.

Querfurth, H. W., & LaFerla, F. M. (2010). Alzheimer's disease. New England Journal of Medicine, 362(4), 329-344.

Bai, B., Chen, P. C., Hales, C. M., Wu, Z., Pagala, V., High, A. A., ... & Peng, J. (2014). Integrated approaches for analyzing U1-70K cleavage in Alzheimer’s disease. Journal of proteome research, 13(11), 4526-4534.

Apostolova, L. G., Risacher, S. L., Duran, T., Stage, E. C., Goukasian, N., West, J. D., ... & Alzheimer’s Disease Neuroimaging Initiative. (2018). Associations of the top 20 Alzheimer disease risk variants with brain amyloidosis. JAMA neurology, 75(3), 328-341.

Alexopoulos, P., Sorg, C., Förschler, A., Grimmer, T., Skokou, M., Wohlschläger, A., ... & Preibisch, C. (2012). Perfusion abnormalities in mild cognitive impairment and mild dementia in Alzheimer’s disease measured by pulsed arterial spin labeling MRI. European archives of psychiatry and clinical neuroscience, 262, 69-77.

Alexander, G. E., Lin, L., Yoshimaru, E. S., Bharadwaj, P. K., Bergfield, K. L., Hoang, L. T., ... & Trouard, T. P. (2020). Age-related regional network covariance of magnetic resonance imaging gray matter in the rat. Frontiers in aging neuroscience, 12, 267.

Akhter, H., Huang, W. T., Van Groen, T., Kuo, H. C., Miyata, T., & Liu, R. M. (2018). A small molecule inhibitor of plasminogen activator inhibitor-1 reduces brain amyloid-β load and improves memory in an animal model of Alzheimer’s disease. Journal of Alzheimer's Disease, 64(2), 447-457.

Akhter, H., Katre, A., Li, L., Liu, X., & Liu, R. M. (2011). Therapeutic potential and anti-amyloidosis mechanisms of tert-butylhydroquinone for Alzheimer's disease. Journal of Alzheimer's Disease, 26(4), 767-778.

Santos, C. Y., Snyder, P. J., Wu, W. C., Zhang, M., Echeverria, A., & Alber, J. (2017). Pathophysiologic relationship between Alzheimer's disease, cerebrovascular disease, and cardiovascular risk: a review and synthesis. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 7, 69-87.

Anjum, I., Fayyaz, M., Wajid, A., Sohail, W., & Ali, A. (2018). Does obesity increase the risk of dementia: a literature review. Cureus, 10(5).

Nicolas, G., Acuña‐Hidalgo, R., Keogh, M. J., Quenez, O., Steehouwer, M., Lelieveld, S., ... & Hoischen, A. (2018). Somatic variants in autosomal dominant genes are a rare cause of sporadic Alzheimer's disease. Alzheimer's & Dementia, 14(12), 1632-1639.

Liljegren, M., Waldö, M. L., Rydbeck, R., & Englund, E. (2018). Police interactions among neuropathologically confirmed dementia patients: prevalence and cause. Alzheimer Disease & Associated Disorders, 32(4), 346-350.

Tong, B. C. K., Wu, A. J., Li, M., & Cheung, K. H. (2018). Calcium signaling in Alzheimer's disease & therapies. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1865(11), 1745-1760.

Swerdlow, R. H. (2007). Pathogenesis of Alzheimer’s disease. Clinical interventions in aging, 2(3), 347-359.

Harilal, S., Jose, J., Parambi, D. G. T., Kumar, R., Mathew, G. E., Uddin, M. S., ... & Mathew, B. (2019). Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. Journal of Pharmacy and Pharmacology, 71(9), 1370-1383.

Khoury, R., & Grossberg, G. T. (2020). Deciphering Alzheimer’s disease: Predicting new therapeutic strategies via improved understanding of biology and pathogenesis. Expert opinion on therapeutic targets, 24(9), 859-868.

Diaz-Ruiz, C., Wang, J., Ksiezak-Reding, H., Ho, L., Qian, X., Humala, N., ... & Pasinetti, G. M. (2009). Role of Hypertension in Aggravating Aβ Neuropathology of AD Type and Tau‐MediatedMotor Impairment. Cardiovascular psychiatry and neurology, 2009(1), 107286.

Nehls, M. (2016). Unified theory of Alzheimer’s disease (UTAD): implications for prevention and curative therapy. Journal of molecular psychiatry, 4(1), 3.

Hoffman, L. B., Schmeidler, J., Lesser, G. T., Beeri, M. S., Purohit, D. P., Grossman, H. T., & Haroutunian, V. (2009). Less Alzheimer disease neuropathology in medicated hypertensive than nonhypertensive persons. Neurology, 72(20), 1720-1726.

Anderson, B. M., Hirschstein, Z., Novakovic, Z. M., & Grasso, P. (2020). MA-[d-Leu-4]-OB3, a small molecule synthetic peptide leptin mimetic, mirrors the cognitive enhancing action of leptin in a mouse model of type 1 diabetes mellitus and Alzheimer’s disease-like cognitive impairment. International Journal of Peptide Research and Therapeutics, 26, 1243-1249.

Bonds, J. A., Shetti, A., Bheri, A., Chen, Z., Disouky, A., Tai, L., ... & Lazarov, O. (2019). Depletion of caveolin-1 in type 2 diabetes model induces Alzheimer's disease pathology precursors. Journal of Neuroscience, 39(43), 8576-8583.

Refsum, H., Smith, A. D., Ueland, P. M., Nexo, E., Clarke, R., McPartlin, J., ... & Scott, J. M. (2004). Facts and recommendations about total homocysteine determinations: an expert opinion. Clinical chemistry, 50(1), 3-32.

Pacheco-Quinto, J., de Turco, E. B. R., DeRosa, S., Howard, A., Cruz-Sanchez, F., Sambamurti, K., ... & Pappolla, M. A. (2006). Hyperhomocysteinemic Alzheimer's mouse model of amyloidosis shows increased brain amyloid β peptide levels. Neurobiology of disease, 22(3), 651-656.

Selley, M. L. (2004). Increased homocysteine and decreased adenosine formation in Alzheimer's disease. Neurological research, 26(5), 554-557.

Valenzuela, P. L., Castillo-García, A., Morales, J. S., de la Villa, P., Hampel, H., Emanuele, E., ... & Lucia, A. (2020). Exercise benefits on Alzheimer’s disease: State-of-the-science. Ageing research reviews, 62, 101108.

Gard, T., Taquet, M., Dixit, R., Hölzel, B. K., de Montjoye, Y. A., Brach, N., ... & Lazar, S. W. (2014). Fluid intelligence and brain functional organization in aging yoga and meditation practitioners. Frontiers in aging neuroscience, 6, 76.

Ling, T. S., Chandrasegaran, S., Xuan, L. Z., Suan, T. L., Elaine, E., Nathan, D. V., Chai, Y. H., Gunasekaran, B., & Salvamani, S. (2021). The Potential Benefits of Nanotechnology in Treating Alzheimer's Disease. BioMed research international, 2021, 5550938. https://doi.org/10.1155/2021/5550938

Heath, J. R., & Davis, M. E. (2008). Nanotechnology and cancer. Annu. Rev. Med., 59(1), 251-265.

Klefenz, H. (2004). Nanobiotechnology: from molecules to systems. Engineering in life sciences, 4(3), 211-218.

West, J. L., & Halas, N. J. (2003). Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annual review of biomedical engineering, 5(1), 285-292.

Wiek, A., Farioli, F., Fukushi, K., & Yarime, M. (2012). Sustainability science: bridging the gap between science and society. Sustainability Science, 7, 1-4.

Helland, A., & Kastenholz, H. (2008). Development of nanotechnology in light of sustainability. Journal of Cleaner Production, 16(8-9), 885-888.

Pandit, S., Dasgupta, D., Dewan, N., & Prince, A. (2016). Nanotechnology based biosensors and its application. The Pharma Innovation, 5(6, Part A), 18.

Su, H., Li, S., Jin, Y., Xian, Z., Yang, D., Zhou, W., ... & Kerman, K. (2017). Nanomaterial-based biosensors for biological detections. Advanced Health Care Technologies, 19-29.

Laroui, H., Rakhya, P., Xiao, B., Viennois, E., & Merlin, D. (2013). Nanotechnology in diagnostics and therapeutics for gastrointestinal disorders. Digestive and Liver Disease, 45(12), 995-1002.

Anderson, D. S., Sydor, M. J., Fletcher, P., & Holian, A. (2016). Nanotechnology: the risks and benefits for medical diagnosis and treatment. J. Nanomed. Nanotechnol, 7(4), e143.

Rizzello, L. (2018). Nanotechnology meets immunotherapy: CAR-T cells technology and beyond. Journal of Biomaterials, 1(1), 1-6.

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931.

Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of drug delivery science and technology, 53, 101174.

Jagaran, K., & Singh, M. (2021). Nanomedicine for neurodegenerative disorders: Focus on Alzheimer’s and Parkinson’s diseases. International journal of molecular sciences, 22(16), 9082.

Indrasekara, A. S. D., Wadams, R. C., & Fabris, L. (2014). Ligand exchange on gold nanorods: going back to the future. Particle & Particle Systems Characterization, 31(8), 819-838.

Hur, J. Y., Frost, G. R., Wu, X., Crump, C., Pan, S. J., Wong, E., ... & Li, Y. M. (2020). The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease. Nature, 586(7831), 735-740.

Hu, Y., Hu, X., Lu, Y., Shi, S., Yang, D., & Yao, T. (2020). New strategy for reducing tau aggregation cytologically by a hairpinlike molecular inhibitor, tannic acid encapsulated in liposome. ACS Chemical Neuroscience, 11(21), 3623-3634.

Hettiarachchi, S. D., Zhou, Y., Seven, E., Lakshmana, M. K., Kaushik, A. K., Chand, H. S., & Leblanc, R. M. (2019). Nanoparticle-mediated approaches for Alzheimer’s disease pathogenesis, diagnosis, and therapeutics. Journal of controlled release, 314, 125-140.

Hardy, J. A., & Higgins, G. A. (1992). Alzheimer's disease: the amyloid cascade hypothesis. Science, 256(5054), 184-185.

Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., & Binder, L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences, 83(13), 4913-4917.

Gregoriadis, G., & Ryman, B. E. (1971). Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochemical Journal, 124(5), 58P.

Gao, W., Liu, Y., Jing, G., Li, K., Zhao, Y., Sha, B., ... & Wu, D. (2017). Rapid and efficient crossing blood-brain barrier: Hydrophobic drug delivery system based on propionylated amylose helix nanoclusters. Biomaterials, 113, 133-144.

Fang, J., Zhang, P., Zhou, Y., Chiang, C. W., Tan, J., Hou, Y., ... & Cheng, F. (2021). Endophenotype-based in silico network medicine discovery combined with insurance record data mining identifies sildenafil as a candidate drug for Alzheimer’s disease. Nature Aging, 1(12), 1175-1188.

Elmaleh, D. R., Farlow, M. R., Conti, P. S., Tompkins, R. G., Kundakovic, L., & Tanzi, R. E. (2019). Developing effective Alzheimer’s disease therapies: clinical experience and future directions. Journal of Alzheimer's Disease, 71(3), 715-732.

DeKosky, S. T., Ikonomovic, M. D., Styren, S. D., Beckett, L., Wisniewski, S., Bennett, D. A., ... & Mufson, E. J. (2002). Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 51(2), 145-155.

Das, S., Dowding, J. M., Klump, K. E., McGinnis, J. F., Self, W., & Seal, S. (2013). Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine, 8(9), 1483-1508.

Damiano, M. G., Mutharasan, R. K., Tripathy, S., McMahon, K. M., & Thaxton, C. S. (2013). Templated high density lipoprotein nanoparticles as potential therapies and for molecular delivery. Advanced drug delivery reviews, 65(5), 649-662.

Ambesh, P., & Angeli, D. G. (2015). Nanotechnology in neurology: Genesis, current status, and future prospects. Annals of Indian Academy of Neurology, 18(4), 382-386.

Mostafavi, E., Soltantabar, P., & Webster, T. J. (2018). Biomaterials in Translational Medicine: A Biomaterials Approach.

Wang, Z., Ruan, J., & Cui, D. (2009). Advances and prospect of nanotechnology in stem cells. Nanoscale research letters, 4, 593-605.

Giannoudis, P. V., & Pountos, I. (2005). Tissue regeneration: the past, the present and the future. Injury, 36(4), S2-S5.

Downloads

Published

2024-07-06

How to Cite

Samiullah, M., Chauhan, K., Manimekalai, K., Sherief, S. H., Pandya, M. K., Ahmed, S., Bhaskar, R., & Prakash, J. (2024). Nanotechnology Based Therapeutic Approach in Alzheimer’s. Journal for Research in Applied Sciences and Biotechnology, 3(3), 149–157. https://doi.org/10.55544/jrasb.3.3.24

Issue

Section

Articles

Most read articles by the same author(s)