Hydrogel-Based Drug Delivery Nanosystems for the Treatment of Brain Tumors: A Systematic Review

Authors

  • Subham Kumar Assistant Professor, School of Pharmacy and Research, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand, 248007, INDIA
  • Puja Kumari Assistant Professor, SNS College of Pharmacy, Motihari, Bihar, 845401, INDIA
  • Dilip Suthar Research Scholar, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 303017, INDIA
  • Rajeev Ranjan Raj Research Scholar, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 303017, INDIA
  • Aniket Jain Research Scholar, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 303017, INDIA

DOI:

https://doi.org/10.55544/jrasb.3.2.41

Keywords:

Hydrogel, brain tumor, MRI, therapeutic effects

Abstract

The limitations and negative effects of current therapeutic techniques for brain tumors necessitate the selection of alternative therapeutic options. Therapeutic hydrogel systems that are monitored by magnetic resonance imaging (MRI) are one alternative for neurosurgical treatment of brain tumors that does not need any invasive procedures. There is a significant deal of potential for the treatment of brain tumors that can be attributed to the specific physical and chemical properties that hydrogels possess. The ability to encapsulate therapeutic molecules, provide regulated and sustained drug release, and successfully pass the blood-brain barrier are some of the properties that are included in this category. By combining hydrogel systems with magnetic resonance imaging (MRI) capabilities, it is possible to design therapeutic approaches that provide regulated release of therapeutic medications and real-time monitoring possibilities. Despite the fact that surgical resection is still extremely important, there is a growing demand for alternatives that can supplement or even replace it. Within the scope of this narrative review, the therapeutic hydrogel systems that are monitored by magnetic resonance imaging (MRI) will be evaluated to determine their potential for the non-surgical treatment of brain tumors.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Louis, D. N., Perry, A., Reifenberger, G., Von Deimling, A., Figarella-Branger, D., Cavenee, W. K., ... & Ellison, D. W. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta neuropathologica, 131, 803-820.

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., ... & Van Leemput, K. (2014). The multimodal brain tumor image segmentation benchmark (BRATS). IEEE transactions on medical imaging, 34(10), 1993-2024.

Xu, S., Tang, L., Li, X., Fan, F., & Liu, Z. (2020). Immunotherapy for glioma: current management and future application. Cancer letters, 476, 1-12.

Aran, D., Sirota, M., & Butte, A. J. (2015). Systematic pan-cancer analysis of tumour purity. Nature communications, 6(1), 8971.

Watanabe, T., Nobusawa, S., Kleihues, P., & Ohgaki, H. (2009). IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. The American journal of pathology, 174(4), 1149-1153.

Carro, M. S., Lim, W. K., Alvarez, M. J., Bollo, R. J., Zhao, X., Snyder, E. Y., ... & Iavarone, A. (2010). The transcriptional network for mesenchymal transformation of brain tumours. Nature, 463(7279), 318-325.

Ohgaki, H., & Kleihues, P. (2007). Genetic pathways to primary and secondary glioblastoma. The American journal of pathology, 170(5), 1445-1453.

Huse, J. T., & Holland, E. C. (2010). Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nature reviews cancer, 10(5), 319-331.

Krex, D., Klink, B., Hartmann, C., Von Deimling, A., Pietsch, T., Simon, M., ... & German Glioma Network. (2007). Long-term survival with glioblastoma multiforme. Brain, 130(10), 2596-2606.

Nobusawa, S., Watanabe, T., Kleihues, P., & Ohgaki, H. (2009). IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clinical Cancer Research, 15(19), 6002-6007.

Ricard, D., Idbaih, A., Ducray, F., Lahutte, M., Hoang-Xuan, K., & Delattre, J. Y. (2012). Primary brain tumours in adults. The Lancet, 379(9830), 1984-1996.

Qin, W., Chandra, J., Abourehab, M. A., Gupta, N., Chen, Z. S., Kesharwani, P., & Cao, H. L. (2023). New opportunities for RGD-engineered metal nanoparticles in cancer. Molecular Cancer, 22(1), 87.

Belpomme, D., Hardell, L., Belyaev, I., Burgio, E., & Carpenter, D. O. (2018). Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. Environmental pollution, 242, 643-658.

Hahn Dunn, G. P., Rinne, M. L., Wykosky, J., Genovese, G., Quayle, S. N., Dunn, I. F., ... &, W. C. (2012). Emerging insights into the molecular and cellular basis of glioblastoma. Genes & development, 26(8), 756-784.

Sahana, S. (2020). Purabi saha, Roshan kumar, Pradipta das, Indranil Chatterjee, Prasit Roy, Sk Abdur Rahamat. A Review of the 2019 Corona virus (COVID-19) World Journal of Pharmacy and Pharmaceutical science, 9(9), 2367-2381.

Kumar, R., Jangir, D. K., Verma, G., Shekhar, S., Hanpude, P., Kumar, S., ... & Kanti Maiti, T. (2017). S-nitrosylation of UCHL1 induces its structural instability and promotes α-synuclein aggregation. Scientific reports, 7(1), 44558.

Saha, P., Kumar, R., Nyarko, R. O., Kahwa, I., & Owusu, P. (2021). Herbal Secondary Metabolite For Gastro-Protective Ulcer Activity With Api Structures.

Sahana, S., Kumar, R., Nag, S., Paul, R., Chatterjee, I., & Guha, N. (2020). A Review On Alzheimer Disease And Future Prospects.

Saha, P., Kumar, R., Nyarko, R. O., Kahwa, I., & Owusu, P. (2021). Herbal Secondary Metabolite For Gastro-Protective Ulcer Activity With Api Structures.

Kumar, R., & Saha, P. (2022). A review on artificial intelligence and machine learning to improve cancer management and drug discovery. International Journal for Research in Applied Sciences and Biotechnology, 9(3), 149-156.

Saha, P., Nyarko, R. O., Lokare, P., Kahwa, I., Boateng, P. O., & Asum, C. (2022). Effect of Covid-19 in Management of Lung Cancer Disease: A Review. Asian Journal of Pharmaceutical Research and Development, 10(3), 58-64.

Keshamma, E., Paswan, S. K., Kumar, R., Saha, P., Trivedi, U., Chourasia, A., & Otia, M. (2022). Alkaloid Based Chemical Constituents of Ocimum santum & Cinchona Bark: A Meta Analysis. Journal for Research in Applied Sciences and Biotechnology, 1(2), 35-42.

Kumar, R., Saha, P., Keshamma, E., Sachitanadam, P., & Subramanian, M. (2022). Docking studies of some novel Hetrocyclic compound as Acat inhibitors: A meta analysis. Journal for Research in Applied Sciences and Biotechnology, 1(3), 33-41.

Nyarko, R. O., Roopini, R., Raviteja, V., Awuchi, C. G., Kumar, R., Faller, E. M., ... & Saha, P. (2022). Novel Sars-CoV-2 Variants & Therapeutic Effects. Journal for Research in Applied Sciences and Biotechnology, 1(2), 25-34.

Godswill, A. C., Amagwula, I. O., Igwe, V. S., & Gonzaga, A. I. (2018). Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils.

Godswill, A. C., Amagwula, I. O., Igwe, V. S., & Gonzaga, A. I. (2018). Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils.

Amle, V. S., Rathod, D. A., Keshamma, E., Kumar, V., Kumar, R., & Saha, P. (2022). Bioactive Herbal Medicine Use for Eye Sight: A Meta Analysis. Journal for Research in Applied Sciences and Biotechnology, 1(3), 42-50.

Keshamma, E., Paswan, S. K., Kumar, R., Saha, P., Trivedi, U., Chourasia, A., & Otia, M. (2022). Alkaloid Based Chemical Constituents of Ocimum santum & Cinchona Bark: A Meta Analysis. Journal for Research in Applied Sciences and Biotechnology, 1(2), 35-42.

Singh, Y., Paswan, S. K., Kumar, R., Otia, M. K., Acharya, S., Kumar, D., & Keshamma, E. (2022). Plant & Its Derivative Shows Therapeutic Activity on Neuroprotective Effect. Journal for Research in Applied Sciences and Biotechnology, 1(2), 10-24.

Daharia, A., Jaiswal, V. K., Royal, K. P., Sharma, H., Joginath, A. K., Kumar, R., & Saha, P. (2022). A Comparative review on ginger and garlic with their pharmacological Action. Asian Journal of Pharmaceutical Research and Development, 10(3), 65-69.

Basso, J., Miranda, A., Nunes, S., Cova, T., Sousa, J., Vitorino, C., & Pais, A. (2018). Hydrogel-based drug delivery nanosystems for the treatment of brain tumors. Gels, 4(3), 62.

Hersh, A. M., Alomari, S., & Tyler, B. M. (2022). Crossing the blood-brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. International journal of molecular sciences, 23(8), 4153.

Reddy, S., Tatiparti, K., Sau, S., & Iyer, A. K. (2021). Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors. Drug Discovery Today, 26(8), 1944-1952.

Caraway, C. A., Gaitsch, H., Wicks, E. E., Kalluri, A., Kunadi, N., & Tyler, B. M. (2022). Polymeric nanoparticles in brain cancer therapy: A review of current approaches. Polymers, 14(14), 2963.

Bellotti, E., Schilling, A. L., Little, S. R., & Decuzzi, P. (2021). Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: A review. Journal of controlled release, 329, 16-35.

Zhou, X., He, X., Shi, K., Yuan, L., Yang, Y., Liu, Q., ... & Qian, Z. (2020). Injectable thermosensitive hydrogel containing erlotinib‐loaded hollow mesoporous silica nanoparticles as a localized drug delivery system for NSCLC therapy. Advanced Science, 7(23), 2001442.

Huang, Y., Li, P., Zhao, R., Zhao, L., Liu, J., Peng, S., ... & Zhang, Z. (2022). Silica nanoparticles: Biomedical applications and toxicity. Biomedicine & Pharmacotherapy, 151, 113053.

Rastegari, E., Hsiao, Y. J., Lai, W. Y., Lai, Y. H., Yang, T. C., Chen, S. J., ... & Chien, Y. (2021). An update on mesoporous silica nanoparticle applications in nanomedicine. Pharmaceutics, 13(7), 1067.

Xu, Z., Liu, Y., Ma, R., Chen, J., Qiu, J., Du, S., ... & Chen, T. (2022). Thermosensitive hydrogel incorporating Prussian blue nanoparticles promotes diabetic wound healing via ROS scavenging and mitochondrial function restoration. ACS applied materials & interfaces, 14(12), 14059-14071.

Tao, S. C., Huang, J. Y., Gao, Y., Li, Z. X., Wei, Z. Y., Dawes, H., & Guo, S. C. (2021). Small extracellular vesicles in combination with sleep-related circRNA3503: a targeted therapeutic agent with injectable thermosensitive hydrogel to prevent osteoarthritis. Bioactive materials, 6(12), 4455-4469.

Yan, J., Wang, Y., Ran, M., Mustafa, R. A., Luo, H., Wang, J., ... & Zhang, H. (2021). Peritumoral microgel reservoir for long‐term light‐controlled triple‐synergistic treatment of osteosarcoma with single ultra‐low dose. Small, 17(31), 2100479.

Wei, P., Wang, L., Xie, F., & Cai, J. (2022). Strong and tough cellulose–graphene oxide composite hydrogels by multi-modulus components strategy as photothermal antibacterial platform. Chemical Engineering Journal, 431, 133964.

Zhou, X., He, X., Shi, K., Yuan, L., Yang, Y., Liu, Q., ... & Qian, Z. (2020). Injectable thermosensitive hydrogel containing erlotinib‐loaded hollow mesoporous silica nanoparticles as a localized drug delivery system for NSCLC therapy. Advanced Science, 7(23), 2001442.

Krüger-Genge, A., Tondera, C., Hauser, S., Braune, S., Görs, J., Roch, T., ... & Jung, F. (2021). Immunocompatibility and non-thrombogenicity of gelatin-based hydrogels. Clinical hemorheology and microcirculation, 77(3), 335-350.

Rasmussen, M. K., Mestre, H., & Nedergaard, M. (2018). The glymphatic pathway in neurological disorders. The Lancet Neurology, 17(11), 1016-1024.

Hablitz, L. M., & Nedergaard, M. (2021). The glymphatic system: a novel component of fundamental neurobiology. Journal of Neuroscience, 41(37), 7698-7711.

Proulx, S. T. (2021). Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cellular and Molecular Life Sciences, 78(6), 2429-2457.

Kumar, R., & Saha, P. (2022). A review on artificial intelligence and machine learning to improve cancer management and drug discovery. International Journal for Research in Applied Sciences and Biotechnology, 9(3), 149-156.

Bohr, T., Hjorth, P. G., Holst, S. C., Hrabětová, S., Kiviniemi, V., Lilius, T., ... & Nedergaard, M. (2022). The glymphatic system: Current understanding and modeling. IScience, 25(9).

Dorrier, C. E., Jones, H. E., Pintarić, L., Siegenthaler, J. A., & Daneman, R. (2022). Emerging roles for CNS fibroblasts in health, injury and disease. Nature Reviews Neuroscience, 23(1), 23-34.

Saha, P., Kumar, A., Bhanja, J., Shaik, R., Kawale, A. L., & Kumar, R. (2022). A review of immune blockade safety and antitumor activity of dostarlimab therapy in endometrial cancer. International Journal for Research in Applied Sciences and Biotechnology, 9(3), 201-209.

Amle, V. S., Rathod, D. A., Keshamma, E., Kumar, V., Kumar, R., & Saha, P. (2022). Bioactive Herbal Medicine Use for Eye Sight: A Meta Analysis. Journal for Research in Applied Sciences and Biotechnology, 1(3), 42-50.

Godswill, A. C., Amagwula, I. O., Igwe, V. S., & Gonzaga, A. I. (2018). Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils.

Lohela, T. J., Lilius, T. O., & Nedergaard, M. (2022). The glymphatic system: implications for drugs for central nervous system diseases. Nature Reviews Drug Discovery, 21(10), 763-779.

Bothwell, S. W., Janigro, D., & Patabendige, A. (2019). Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids and Barriers of the CNS, 16(1), 9.

Nyarko, R. O., Roopini, R., Raviteja, V., Awuchi, C. G., Kumar, R., Faller, E. M., ... & Saha, P. (2022). Novel Sars-CoV-2 Variants & Therapeutic Effects. Journal for Research in Applied Sciences and Biotechnology, 1(2), 25-34.

Uemura, M. T., Maki, T., Ihara, M., Lee, V. M., & Trojanowski, J. Q. (2020). Brain microvascular pericytes in vascular cognitive impairment and dementia. Frontiers in aging neuroscience, 12, 80.

Hladky, S. B., & Barrand, M. A. (2018). Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood–brain barrier. Fluids and Barriers of the CNS, 15, 1-73.

Forte, A. E., Galvan, S., Manieri, F., y Baena, F. R., & Dini, D. (2016). A composite hydrogel for brain tissue phantoms. Materials & Design, 112, 227-238.

Zhong, J., Chan, A., Morad, L., Kornblum, H. I., Fan, G., & Carmichael, S. T. (2010). Hydrogel matrix to support stem cell survival after brain transplantation in stroke. Neurorehabilitation and neural repair, 24(7), 636-644.

Downloads

Published

2024-05-25

How to Cite

Kumar, S., Kumari, P., Suthar, D., Raj, R. R., & Jain, A. (2024). Hydrogel-Based Drug Delivery Nanosystems for the Treatment of Brain Tumors: A Systematic Review. Journal for Research in Applied Sciences and Biotechnology, 3(2), 242–251. https://doi.org/10.55544/jrasb.3.2.41

Issue

Section

Articles