Covid-19 Detection using qRT-PCR - A Review
DOI:
https://doi.org/10.55544/jrasb.1.3.31Keywords:
Coronavirus, Ct-value, detection, RT-PCRAbstract
In the ongoing Covid pandemic, the monitoring of SARSnCoV-2 with the help of viral loads/viral kinetics has become more essential via the RT-PCR technique. However, the interpretations of qRT-PCR technique results are made as qualitative and quantitative or semi-quantitative, and day by day, this interpretation is becoming more important. Reverse transcription polymerase chain reaction is the most widely used technique for detecting viruses (rRT-PCR). Due to probable false-negative or false-positive findings, present techniques must be improved to avoid incorrect conclusions. Researchers have developed a multiplex rRT-PCR diagnostic method that simultaneously targets viral genes (RdRP and E) and one human gene (RP). The values of the Cycle threshold called Ct values that are a result of the RT-PCR test are highly affected by the variations attained among the different runs required to be operated and must be determined by the laboratories, especially in the quality control of quantitative RT-PCR. Somewhere, batch effects also play an important role in Ct value. Regrettably, several papers on Covid-19 used ingenuous values for Ct from qRT-PCR, which are the incorrect quantitative analysis unit. Qualitative analysis and Quantitative analysis both are of having different meanings; interpretation of Ct values cannot be interpreted directly as viral load; it must need a reference material with standard curves. The tractability and validity of the standard curve are the basis of the evaluation of the values. These factors help attain the accurate quantification of the expected number of viral copies.
Downloads
Metrics
References
Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology journal, 16(1), 1-22.
Zhang, L., Jackson, C. B., Mou, H., Ojha, A., Rangarajan, E. S., Izard, T., ... & Choe, H. (2020). The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. BioRxiv.
Eaaswarkhanth, M., Al Madhoun, A., & Al-Mulla, F. (2020). Could the D614G substitution in the SARS-CoV-2 spike (S) protein be associated with higher COVID-19 mortality?. International Journal of Infectious Diseases, 96, 459-460.
Osório, N. S., & Correia-Neves, M. (2021). Implication of SARS-CoV-2 evolution in the sensitivity of RT-qPCR diagnostic assays. The Lancet Infectious Diseases, 21(2), 166-167.
Jespers, V., & Roberfroid, D. (2020). Aerosol-Generating Procedures.
Liu, J., Liao, X., Qian, S., Yuan, J., Wang, F., Liu, Y., ... & Zhang, Z. (2020). Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020. Emerging infectious diseases, 26(6), 1320.
Chan, J. F., Lau, S. K., To, K. K., Cheng, V. C., Woo, P. C., & Yuen, K. Y. (2015). Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clinical microbiology reviews, 28(2), 465-522.
Fahmi, I. (2019). World Health Organization coronavirus disease 2019 (Covid-19) situation report. DroneEmprit.
Ong, S. W. X., Tan, Y. K., Chia, P. Y., Lee, T. H., Ng, O. T., Wong, M. S. Y., & Marimuthu, K. (2020). Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. Jama, 323(16), 1610-1612.
van Dorp, L., Acman, M., Richard, D., Shaw, L. P., Ford, C. E., Ormond, L., ... & Balloux, F. (2020). Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infection, Genetics and Evolution, 83, 104351.
Arya, M., Shergill, I. S., Williamson, M., Gommersall, L., Arya, N., & Patel, H. R. (2005). Basic principles of real-time quantitative PCR. Expert review of molecular diagnostics, 5(2), 209-219.
https://encryptedtbn0.gstatic.com/images?q=tbn:ANd9GcQVRQxWejGCTWWqLrIvkrTeGD6Mi7b5dD3o3A&usqp=CAU
https://www.pnas.org/cms/10.1073/pnas.2116155118/asset/7f41ec4f-82c2-46eb-80e5 efcfa4ab868d/assets/images/large/pnas.202116155fig01.jpg
Younes, N., Al-Sadeq, D. W., Al-Jighefee, H., Younes, S., Al-Jamal, O., Daas, H. I., ... & Nasrallah, G. K. (2020). Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2. Viruses, 12(6), 582.
Patel, R., Babady, E., Theel, E. S., Storch, G. A., Pinsky, B. A., St. George, K., ... & Bertuzzi, S. (2020). Report from the American Society for Microbiology COVID-19 International Summit, March 23 2020: Value of diagnostic testing for SARS–CoV-2/COVID-19. MBio, 11(2), e00722-20.
Kermali, M., Khalsa, R. K., Pillai, K., Ismail, Z., & Harky, A. (2020). The role of biomarkers in diagnosis of COVID-19–A systematic review. Life sciences, 254, 117788.
Moses, S., Warren, C., Robinson, P., Curtis, J., Asquith, S., Holme, J., ... & Hanley, Q. S. (2020). Endpoint PCR Detection of Sars-CoV-2 RNA. medRxiv.
Bustin, S. A. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of molecular endocrinology, 25(2), 169-193.
World Health Organization. (2020). Laboratory testing for coronavirus disease (COVID-19) in suspected human cases: interim guidance, March 19 2020 (No. WHO/COVID-19/laboratory/2020.5). World Health Organization.
Yip, S. P., To, S. S. T., Leung, P. H., Cheung, T. S., Cheng, P. K., & Lim, W. W. (2005). Use of dual TaqMan probes to increase the sensitivity of 1-step quantitative reverse transcription-PCR: application to the detection of SARS coronavirus. Clinical chemistry, 51(10), 1885-1888.
Al-Saud, H., Al-Romaih, K., Bakheet, R., Mahmoud, L., Al-Harbi, N., Alshareef, I., ... & Al-Mozaini, M. A. (2020). Automated SARS-COV-2 RNA extraction from patient nasopharyngeal samples using a modified DNA extraction kit for high throughput testing. Annals of Saudi Medicine, 40(5), 373-381.
Asghari, E., Höving, A., van Heijningen, P., Kiel, A., Krahlemann-Köhler, A., Lütkemeyer, M., ... & Kaltschmidt, C. (2020). Ultra-fast one-step RT-PCR protocol for the detection of SARS-CoV-2. medRxiv.
Zhen, W., & Berry, G. J. (2020). Development of a new multiplex real-time RT-PCR assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. The Journal of Molecular Diagnostics, 22(12), 1367-1372.
Han, M. S., Byun, J. H., Cho, Y., & Rim, J. H. (2021). RT-PCR for SARS-CoV-2: quantitative versus qualitative.
Zheng, S., Fan, J., Yu, F., Feng, B., Lou, B., Zou, Q., ... & Liang, T. (2020). Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. bmj, 369.
Zhou, Y., Pei, F., Ji, M., Wang, L., Zhao, H., Li, H., ... & Wang, Y. (2020). Sensitivity evaluation of 2019 novel coronavirus (SARS-CoV-2) RT-PCR detection kits and strategy to reduce false negative. PLoS One, 15(11), e0241469.
Ng, E. K., Hui, D. S., Chan, K. A., Hung, E. C., Chiu, R. W., Lee, N., ... & Lo, Y. D. (2003). Quantitative analysis and prognostic implication of SARS coronavirus RNA in the plasma and serum of patients with severe acute respiratory syndrome. Clinical chemistry, 49(12), 1976-1980.
Emery, S. L., Erdman, D. D., Bowen, M. D., Newton, B. R., Winchell, J. M., Meyer, R. F., ... & Anderson, L. J. (2004). Real-time reverse transcription–polymerase chain reaction assay for SARS-associated coronavirus. Emerging infectious diseases, 10(2), 311.
Tombuloglu, H., Sabit, H., Al-Suhaimi, E., Al Jindan, R., & Alkharsah, K. R. (2021). Development of multiplex real-time RT-PCR assay for the detection of SARS-CoV-2. PLoS One, 16(4), e0250942.
Rajyalakshmi, B., Samavedam, S., Reddy, P. R., & Aluru, N. (2021). Prognostic value of "cycle threshold" in confirmed COVID-19 patients. Indian Journal of Critical Care Medicine: Peer-reviewed, Official Publication of Indian Society of Critical Care Medicine, 25(3), 322.
Tom, M. R., & Mina, M. J. (2020). To interpret the SARS-CoV-2 test, consider the cycle threshold value. Clinical Infectious Diseases.
Chang, M. C., Hur, J., & Park, D. (2020). Interpreting the COVID-19 test results: a guide for physiatrists. American journal of physical medicine & rehabilitation.
Orooji, Y., Sohrabi, H., Hemmat, N., Oroojalian, F., Baradaran, B., Mokhtarzadeh, A., ... & Karimi-Maleh, H. (2021). An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-micro letters, 13(1), 1-30.
Wacharapluesadee, S., Kaewpom, T., Ampoot, W., Ghai, S., Khamhang, W., Worachotsueptrakun, K., ... & Hemachudha, T. (2020). Evaluating the efficiency of specimen pooling for PCR‐based detection of COVID‐19. Journal of medical virology, 92(10), 2193-2199.
Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology journal. 2019 Dec;16(1):1-22.
Zhang L, Jackson CB, Mou H, Ojha A, Rangarajan ES, Izard T, Farzan M, Choe H. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. BioRxiv. 2020 January 1.
Eaaswarkhanth M, Al Madhoun A, Al-Mulla F. Could the D614G substitution in the SARS-CoV-2 spike (S) protein be associated with higher COVID-19 mortality?. International Journal of Infectious Diseases. 2020 July 1;96:459-60.
Osório NS, Correia-Neves M. Implication of SARS-CoV-2 evolution in the sensitivity of RT-qPCR diagnostic assays. The Lancet Infectious Diseases. 2021 Feb 1;21(2):166-7.
JESPERS V, ROBERFROID D. AEROSOL-GENERATING PROCEDURES.
Liu J, Liao X, Qian S, Yuan J, Wang F, Liu Y, Wang Z, Wang FS, Liu L, Zhang Z. Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020. Emerging infectious diseases. 2020 Jun;26(6):1320.
Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clinical microbiology reviews. 2015 Apr;28(2):465-522.
World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 73.
Ong SW, Tan YK, Chia PY, Lee TH, Ng OT, Wong MS, Marimuthu K. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. Jama. 2020 Apr 28;323(16):1610-2.
van Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, Owen CJ, Pang J, Tan CC, Boshier FA, Ortiz AT. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infection, Genetics and Evolution. 2020 Sep 1;83:104351.
Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR. Basic principles of real-time quantitative PCR. Expert review of molecular diagnostics. 2005 Mar 1;5(2):209-19.
Younes N, Al-Sadeq DW, Al-Jighefee H, Younes S, Al-Jamal O, Daas HI, Yassine H, Nasrallah GK. Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2. Viruses. 2020 Jun;12(6):582.
Patel R, Babady E, Theel ES, Storch GA, Pinsky BA, St. George K, Smith TC, Bertuzzi S. Report from the American Society for Microbiology COVID-19 International Summit, March 23 2020: Value of diagnostic testing for SARS–CoV-2/COVID-19.
Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19–A systematic review. Life sciences. 2020 August 1;254:117788.
Moses SE, Warren C, Robinson P, Curtis J, Asquith S, Holme J, Jain N, Brookes KJ, Hanley QS. Endpoint PCR Detection of Sars-CoV-2 RNA. medRxiv. 2020 January 1.
Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of molecular endocrinology. 2000 Oct 1;25(2):169-93.
World Health Organization. Laboratory testing for coronavirus disease ( COVID-19) in suspected human cases: interim guidance, March 19 2020. World Health Organization; 2020.
Yip SP, To SS, Leung PH, Cheung TS, Cheng PK, Lim WW. Use of dual TaqMan probes to increase the sensitivity of 1-step quantitative reverse transcription-PCR: application to the detection of SARS coronavirus. Clinical chemistry. 2005 October 1;51(10):1885-8.
Al-Saud H, Al-Romaih K, Bakheet R, Mahmoud L, Al-Harbi N, Alshareef I, Judia SB, Aharbi L, Alzayed A, Jabaan A, Alhadrami H. Automated SARS-COV-2 RNA extraction from patient nasopharyngeal samples using a modified DNA extraction kit for high throughput testing. Annals of Saudi Medicine. 2020 Sep;40(5):373-81.
Asghari E, Höving A, van Heijningen P, Kiel A, Krahlemann-Köhler A, Lütkemeyer M, Storm J, Vollmer T, Knabbe C, Kaltschmidt B, de Vos G. Ultra-fast one-step RT-PCR protocol for the detection of SARS-CoV-2. medRxiv. 2020 Jan 1.
Zhen W, Berry GJ. Development of a new multiplex real-time RT-PCR assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. The Journal of Molecular Diagnostics. 2020 Dec 1;22(12):1367-72.
Han MS, Byun JH, Cho Y, Rim JH. RT-PCR for SARS-CoV-2: quantitative versus qualitative. The Lancet Infectious Diseases. 2021 Feb 1;21(2):165.
Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, Xie G, Lin S, Wang R, Yang X, Chen W. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. bmj. 2020 April 21;369.
Zhou Y, Pei F, Ji M, Wang L, Zhao H, Li H, Yang W, Wang Q, Zhao Q, Wang Y. Sensitivity evaluation of 2019 novel coronavirus (SARS-CoV-2) RT-PCR detection kits and strategy to reduce false negative. PloS one. 2020 Nov 18;15(11):e0241469.
Ng EK, Hui DS, Chan KA, Hung EC, Chiu RW, Lee N, Wu A, Chim SS, Tong YK, Sung JJ, Tam JS. Quantitative analysis and prognostic implication of SARS coronavirus RNA in the plasma and serum of patients with severe acute respiratory syndrome. Clinical chemistry. 2003 Dec 1;49(12):1976-80.
Emery SL, Erdman DD, Bowen MD, Newton BR, Winchell JM, Meyer RF, Tong S, Cook BT, Holloway BP, McCaustland KA, Rota PA. Real-time reverse transcription–polymerase chain reaction assay for SARS-associated coronavirus. Emerging infectious diseases. 2004 Feb;10(2):311.
Tombuloglu H, Sabit H, Al-Suhaimi E, Al Jindan R, Alkharsah KR. Development of multiplex real-time RT-PCR assay for the detection of SARS-CoV-2. Plos one. 2021 Apr 29;16(4):e0250942.
Rajyalakshmi B, Samavedam S, Reddy PR, Aluru N. Prognostic Value of "Cycle Threshold" in Confirmed COVID-19 Patients. Indian Journal of Critical Care Medicine: Peer-reviewed, Official Publication of Indian Society of Critical Care Medicine. 2021 Mar;25(3):322.
Tom MR, Mina MJ. To interpret the SARS-CoV-2 test, consider the cycle threshold value. Clinical Infectious Diseases. 2020 November 19.
Chang MC, Hur J, Park D. Interpreting the COVID-19 test results: a guide for physiatrists. American journal of physical medicine & rehabilitation. 2020 May 15.
Orooji Y, Sohrabi H, Hemmat N, Oroojalian F, Baradaran B, Mokhtarzadeh A, Mohaghegh M, Karimi-Maleh H. An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-micro letters. 2021 Jan;13(1):1-30.
Wacharapluesadee S, Kaewpom T, Ampoot W, Ghai S, Khamhang W, Worachotsueptrakun K, Wanthong P, Nopvichai C, Supharatpariyakorn T, Putcharoen O, Paitoonpong L. Evaluating the efficiency of specimen pooling for PCR‐based detection of COVID‐19. Journal of medical virology. 2020 Oct;92(10):2193-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Yagyavalkya Sharma, Dr. Lalita Sharma, Priya Agrawal, Megha Gupta, Harsh Vardhan
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.