Biotransformation: A Novel Approach of Modulating and Synthesizing Compounds

Authors

  • Proloy Sankar Dev Roy Division of Biochemistry, Faculty of Basic Sciences, SKUAST-Jammu, INDIA
  • Brajeshwar Singh Division of Microbiology, Faculty of Basic Sciences, SKUAST-Jammu, INDIA
  • Dr. Vikas Sharma Division of Biochemistry, Faculty of Basic Sciences, SKUAST-Jammu, INDIA
  • Chandan Thappa Division of Biochemistry, Faculty of Basic Sciences, SKUAST-Jammu, INDIA

DOI:

https://doi.org/10.55544/jrasb.1.2.8

Keywords:

Biotransformation, Bioconversion, Microbial transformation, Solid State Fermentation

Abstract

Transformation of potential compounds into utilizable and beneficial forms is often cost involving and time consuming. Chemical transformation though was an existing opportunity catering our needs but due to environmental impacts and cost- benefit ratio analysis it proved futile and a new branch of transformation came into existence termed as biotransformation. Biotransformation is an excellent opportunity of tailoring compounds to cater our needs in a simple and is an eco-friendly approach. Biotransformation allows conversion of one component to another compound by application of biological systems. Fermentation based biotransformation of plant extract is a well-established world-wide standard technique used to maximize shelf-life, nutritional and organoleptic properties and to eliminate harmful substances from primary food substrates. Biotransformation by microbes has grown greatly from a small involvement in highly active fields of green chemistry, including the preparation of pharmaceutical drugs, in recent years. In addition fermentation processes have been targeted and optimized to enhance the production of active microbial metabolites using sufficient or suitable nutrients and with the correct microbial target for functional benefits. At present, significant attention has been given to biotransformation technology worldwide to develop medicines through the processing and enrichment of additional medicinally essential bioactive metabolites including terpenes, alkaloids, phenols, flavonoids and saponins. Biotransformation utilizing various biological systems can be used to modulate and in the enhancement of bioactive compounds in an environment promising way. Biotransformation is assumed to play a key role in green chemistry in future because of its sustainable approach. This review represents an overview of biotransformation techniques and its applications in a nutshell.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aguilar Zárate ,P., Cruz,M.A., Montañez ,J., Rodríguez Herrera , R., Wong Paz , J. E. , Belmares, R. E. and Aguilar,C.N. (2015) Gallic acid production under anaerobic submerged fermentation by two bacilli strains. Microbial Cell Factories, 14:1-7.

Aguilar-Zarate, P., Cruz-Hernandez, M.A., Montanez, J.C., Belmares-Cerda, R.E., Aguilar, C.N. (2014) Enhancement of tannase production by Lactobacillus plantarum CIR1: validation in gas-lift bioreactor. Bioproc. Biosyst. Eng., 37:2305–2316.

Akkaya, Ö. and Arslan, E. (2019) jBiotransformation of 2,4 dinitrotoluene by the beneficial association of engineered Pseudomonas putida with Arabidopsis thaliana. 3 Biotech, 9:1-9.

Amadi, P. U., Nnoka, C. O. & Abbey, B. W. (2018) Biotransformation of plantain pseudostem fibres using local enzyme sources; analysis of their potential as commercial poultry feed. Biocatalysis and Biotransformation, 37:224-232.

An, J.U., Joo, Y.C .and Oh, D.K.(2013) New biotransformation process for production of thefragrant compound γ-dodecalactone from 10-hydroxystearate by permeabilized Waltomyces lipofer cells. Appl. Environ. Microbiol. , 79:2636–2641.

Arruda, C., Eugênio, D. S., Moreira, M. R. Simaro, G. V., Bastos J. K., Martins, C. H. Silva, M. L. A., Veneziani, R. C. S., Vieira, P. B. and Ambrósio, S. R.(2017) Biotransformation of (-)-cubebin by Aspergillus spp. Into (-)-hinokinin and (-)-parabenzlactone, and their evaluation against oral pathogenic bacteria. Natural Product Research, 32: 2803–2816.

Asgher, M., Ijaz, A. and Bilal, M. (2016) Lignocellulose degrading enzymes production by Pleurotus sapidus WC529 and its application in lignin degradation. Turk. J. Biochem., 41:26-36.

Bianchini, L. F., Arruda, M.F.C., Vieira, S.R., Campelo, P.M.S., Grégio, A.M.T. and Rosa1, E.A.R. (2015) Antifungals by Microbial Biotransformation. Frontiers in Microbiology, 6:1-12.

Bicas, J.L., Molina, G., Barros, C.F.F. and Pastore, G.M. (2016) Production of aroma compounds by white biotechnology. The Royal Society of Chemistry, :310–332.

Bier,M. C. J., Medeiros, A. B. P., Kimpe, N. D., Soccol, C. R.(2019)Evaluation of antioxidant activity of the fermented product from the biotransformation of R-(+)-limonene in solid-state fermentation of orange waste by Diaporthe sp..

Biotechnology Research and Innovation, 3:168-176.

Buathong, P., Boonvitthya, N., Truan, G. and Chulalaksananukul, W. (2020) Whole-cell biotransformation of 1, 12-dodecanedioic acid from coconut milk factory wastewater by recombinant CYP52A17SS Expressing Saccharomyces Cerevisiae.Processes, 8:1-11.

Buathong, P., Boonvitthya, N., Truan, G., Chulalaksananukul, W. (2019) Biotransformation of lauric acid into 1, 12-dodecanedioic acid using CYP52A17 expressed in Saccharomyces cerevisiae and its application in refining coconut factory wastewater. International Biodeterioration & Biodegradation, 139: 70–77.

Bution, M.L., Molina, G., Abrahão, M.R.E. and Pastore G.M. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates. Crit. Rev. Biotechnol. 2015, 35:313–325.

Butterweck, V. and Nahrstedt, A. (2012) what is the best strategy for preclinical testing of botanicals? A critical perspective, Planta Med,. 78: 747–754.

Cadena Ch, E. M., Vélez R, J. M., Santa, J. F., & Otálvaro, V. G. (2017) Natural Fibers from Plantain Pseudostem (Musa Paradisiaca) for Use in Fiber-Reinforced Composites. Journal of Natural Fibers, 14: 678-690.

Capistrano, R., Vangestel, C., Vanpachtenbeke, H., Fransen, E., Staelens, S., Apers, S. and Pieters, L. (2016) Co-administration of a Gloriosa Superba extractimproves the in vivo antitumoural activity of gemcitabine in a murine pancreatic tumour model. Phytomedicine, 23:1434-1440.

Capistrano, R., Vangestel, C., Wouters, A., Dockx, Y., Pauwels, P., Stroobants, S., Apers, S, Pieters, L. and Staelens, S. (2016) Efficacy screening of Gloriosa Superba extracts in a murine pancreatic cancer model using 18F-FDG PET/CT for monitoring treatment response. Cancer Biotherapy and Radiopharmaceuticals, 31: 99-109.

Celińska, E., Kubiak, P., Białas, W., Dziadas, M. and Grajek, W. (2013) Yarrowia lipolytica:The novel and promising 2-phenylethanol producer. J. Ind. Microbiol. Biotechnol. , 40:389–392.

Chakraborty, D., Selvam, A., Kaur, B., Wong, J.W.C., Karthikeyan, O.P. (2017) Application of recombinant Pediococcus acidilactici BD16 (fcs +/ech +) for bioconversion of agrowaste to vanillin. Appl. Microbiol. Biotechnol. , 101:5615–5626.

Chakrobaty, D. ,Gupta, G., Kaur, B.(2016) Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM. Protein Expr. Purif,128:123–133.

Chen, P., Yan, L., Wu, Z., Li, S., Bai, Z., Yan, X., Wang, N., Liang N. & Li, H.(2016) A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid. Scientific Reports, 6:1-10.

Chen, Y., Kong, Q., Chi, C, Shan, S. and Guan, B.(2015) Biotransformation of aflatoxin B1 and aflatoxin G1 in peanut meal by anaerobic solid fermentation of Streptococcus thermophillus and Lactobacillus delbrueckii subsp. bulgaricus. International Journal of Food Microbiology, 211:1-5.

Costa D.C., Costa H.S. and Albuquerque, T.G. (2015) Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends Food Sci. Technol. 45:336–354.

De Andrade, D.P., Carvalho, B.F., Schwan, R.F., Dias, D.R.(2017) Production of γ- decalactone by yeast strains under different conditions. Food Technol. Biotechnol. , 55:225–230.

De Sousa, I. P., Teixeira, M. V. S. and Furtado, N. A. J. C. (2018) An Overview of Biotransformation and Toxicity of Diterpenes. Molecules, 23:1-32.

Ekiz, G., Duman, S., Bedir, E., (2018) Biotransformation of cyclocanthogenol by the endophytic fungus Alternaria eureka 1E1BL1. Phytochemistry, 151: 91-98.

Fairweather-Tait, S. J., Bao, Y., Broadley, M. R., Collings, R., Ford, D., Hesketh, J.E. and Hurst, R. (2011) Selenium in human health and disease, Antioxid. Redox Signal., 14 :1337–1383.

Fleige, C and Steinbüchel, A. (2014) Construction of expression vectors for metabolic engineering of the vanillin-producing actinomycete Amycolatopsis sp. ATCC 39116. Appl. Microbiol. Biotechnol. , 98:6387–6395.

Furuya, T., Miura, M., Kuroiwa, M., Kino, K.(2015) High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two stage process. N. Biotechnol. , 32:335–339.

Gaur R, Darokar MP, Ajayakumar PV, Shukla RS, Bhakuni RS. In vitro antimalarial studies of novel artemisinin biotransformed products and its derivatives. Phytochemistry. 2014; 107:135-140. DOI: 10.1016/j. phytochem.2014.08.004

Gauri S.S., Mandal, S.M., Dey, S., and Pati, B.R. (2012) Biotransformation of p-coumaric acid and 2, 4-dichlorophenoxy acetic acid by Azotobacter sp. strain SSB81. Bioresour Technol, 126:350–353.

Gnonlonfin, G. J. B., Hell, K., Adjovi, Y., Fandohan, P., Koudande , D. O., Mensah G. A., Sanni A. & Brimer L.(2013) A review on aflatoxin contamination and its implications in the developing world: a sub-saharan african perspective. Critical Reviews in Food Science and Nutrition, 53:349–365.

Gomes, N., Braga, A., Teixeira, J.A., Belo, I. (2013) Impact of lipase-mediated hydrolysis of castor oil on γ-decalactone production by Yarrowia lipolytica.JAOCS, J. Am. Oil Chem. Soc.,90:1131–1137.

Goretti, M., Turchetti, B., Cramarossa, M.R., Forti, L., Buzzini, P. (2013) Production of flavours and fragrances via bioreduction of (4R)-(-)-carvone and (1R)-(-)-myrtenal by non-conventional yeast whole-cells. Molecules,18:5736–5748.

Goswami A, Saikia PP, Barua NC, Bordoloi M, Yadav A, Bora TC, et al. Bio-transformation of artemisinin using soil microbe: Direct C-acetoxylation of artemisinin at C-9 by Penicilliumsimplissimum. Bioorganic & Medicinal Chemistry Letters. 2010; 20:359-361. DOI: 10.1016/j.bmcl.2009.10.097

Guo D, Zhang L, Pan H, Li X: Metabolic engineering of Escherichia coli for production of 2-Phenylethylacetate from L-phenylalanine. Microbiologyopen 2017, 6.

Hong, C.Y., Park, S.Y., Choi, I.G. (2015) Biotransformation of (-)-α-pinene and geraniol to α-terpineol and p-menthane-3, 8-diol by the white rot fungus, Polyporus brumalis. J. Microbiol. 2015, 53:462–467.

Hua, D. and Xu, P. (2011) Recent advances in biotechnological production of 2-phenylethanol. Biotechnol. Adv.,29:654–660.

Ibrahimi, H., Gadzovska-Simic, S., Tusevski, O., Haziri, A. (2020) Generation of flavor compounds by biotransformation of genetically modified hairy roots of Hypericum perforatum (L.) with basidiomycetes. Food Sci Nutr., 8:2809–2816.

Jo, Y.S., An, J.U., Oh, D.K. (2014) γ-Dodecelactone production from safflower oil via 10- hydroxy-12(z)-octadecenoic acid intermediate by whole cells of Candida boidinii and Stenotrophomonas nitritireducens. J. Agric. Food Chem.,62:6736–6745.

Kang, S.H., Kim, T.H.,Shin, K.C.,Ko, Y.J.,and Oh, D.K. (2019) biotransformation of food-derived saponins, platycosides into deglucosylated saponins including deglucosylated platycodin D and their anti-inflammatory activities. J. Agric. Food Chem., 67, 1470−1477.

Kashi, F. J., Fooladi, J., Bayat, M. (2007) Application of Biotransformation in flavor and Fragrance industry. Pakistan journal of biological sciences, 10:1685-1690.

Khirwadkar, P., Dave, V., Dashora, K. (2014) A review on biotransformation.Indian Journal of Research in Pharmacy and Biotechnology, 2:1136-1140.

Kiiskila, J.D., Das, P., Sarkar, D. and Datta, R. (2015) Phytoremediation of explosive-contaminated soils. Curr. Pollut. Rep., 1:23–34.

Kim, B., Cho, B.R. and Hahn, J.S. (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol.Bioeng. , 111:115–124.

Kumar, D., and Pannu, R. (2018) Perspectives of lindane (γ hexachlorocyclohexane) biodegradationfrom the environment: a review. Bioresour. Bioprocess. 5: 1-18.

Kwon, J. E., Lee, J. W., Park, Y., Sohn, E.H., Choung, E. S., Jang, S.A., Kim, I., Lee, D. E., Koo, H. J., Bak, J. P., Lee, S. R. and Kang, S. C.(2018) Biotransformation of Pueraria lobata Extract with Lactobacillus rhamnosus vitaP1 Enhances Anti-Melanogenic Activity. J. Microbiol. Biotechnol. , 28: 22–31.

Lee, D., Lloyd, N.D.R., Pretorius, I.S., Borneman, A.R.(2016) Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microb. Cell Fact. 2016, 15:1-7.

Leng, Y., Bao, J., Chang G.,, Zheng, H., Li, X., Du, J., Snow, D., and Li, X. (2016) Biotransformation of Tetracycline by a Novel Bacterial Strain Stenotrophomonas maltophilia DT1 , Journal of Hazardous Materials , 318:125-133.

Li, G. H., Shen, Y. M., Liu, Y., Zhang, K. Q. (2006) Production of saponin in fermentation process of Sanchi (Panax notoginseng) and biotransformation of saponin by Bacillus subtilis .Annals of Microbiology, 56: 151-153.

Liu J-H, Chen Y-G, Yu B-Y, Chen Y-J. A novel ketone derivative of artemisinin biotransformed by Streptomyces griseus ATCC 13273. Bioorganic & Medicinal Chemistry Letters. 2006;16:1909-1912. DOI: 10.1016/j.bmcl.2005.12.076

Liu Ji-Hua and Yu Bo-Yang (2010) Biotransformation of bioactive natural products for pharmaceutical lead Compounds,Current Organic Chemistry, 14: 1400-1406.

Liu, X., Wu, L., Kümmel, S. and Richnow H. H. (2020) Characterizing the biotransformation of hexachlorocyclohexanes in wheat using compound-specific stable isotope analysis and enantiomer fraction analysis. Journal of Hazardous Materials, 124301:1-34.

Loi ,M., Fanelli, F., Liuzzi , V. C., Logrieco, A. F. and Mulè G.(2017) Mycotoxin biotransformation by native and commercial enzymes: present and future perspectives. Toxins, 9:1-31.

Loi, M., Fanelli, F., Liuzzi, V. C., Logrieco, A. F. and Mulè, G. (2017) Mycotoxin biotransformation by native and commercial enzymes: present and future perspectives.Toxins, 9:1-31.

Ma, X.K., Daugulis, A. J. (2014) Transformation of ferulic acid to vanillin using a fedbatchsolid-liquid two-phase partitioning bioreactor. Biotechnol. Prog., 30:207–214.

Magro, A. E. A., Silva, L. C., Rasera, G. B. and de Castro, R. J. S. (2019) Solid state fermentation as an efficient strategy for the biotransformation of lentils: enhancing their antioxidant and antidiabetic potentials. Bioresour. Bioprocess. 6:1-9.

Men, Y., Han, P., Helbling, D.E., Jehmlich, N., Herbold, C., Gulde, R., Onnis-Hayden, A., Gu, A.Z., Johnson, D.R., Wagner, M., Fenner, K. (2016) Biotransformation of two pharmaceuticals by the ammonia-oxidizing archaeon Nitrososphaera gargensis. Environ. Sci.Technol. 50, 4682–4692.

Mohd, S., Kushwaha, A. S., Shukla, J., Mandrah K., Shankar, J., Arjaria, N., Saxena, P. N. , Khare, P., Narayan, R., Dixit, S., Siddiqui, M. H., Tuteja, N. , Das, M., Roy, S. K. , Kumar, M. (2019) Fungal mediated biotransformation reduces toxicity of arsenic to soil dwelling microorganism and plant. Ecotoxicology and Environmental Safety, 176 108–118.

Molina, G., Pessôa, M. G., Bicas, J. L., Fontanille, P.,Larroche, C., Pastore, G. M.(2019) Optimization of limonene biotransformation for the production of bulk amounts of α-terpineol. Bioresource Technology, 294:1-9.

Munoz, J. J. R., Lopez, F. M. C., Texier, A., (2020) Ampicillin biotransformation by a nitrifying consortium. World Journal of Microbiology and Biotechnology, 36:1-10.

Mutafova, B., Mutafov, S., Fernande, P. and Berkov, S.( 2016) Microbial transformations of plant origin compounds as a step in preparation of highly valuable pharmaceuticals.Journal of Drug Metabolism &Toxicology, 7:1-11.

Ni, J., Tao, F., Du, H., Xu, P. (2015) Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources. Sci. Rep.,5:1-12.

Nunes, F.M., Dos Santos, G.F., Saraiva ,N.N., Trapp, M.A., De Mattos, M.C., Oliveira, M.D.C.F, Rodrigues-Filho, E.(2013) New fungi for whole-cell biotransformation of carvone enantiomers. Novel p-menthane-2, 8, 9-triols production. Appl. Catal.A Gen.,468:88–94.

Nurika, I., Suhartini S., Barker, G. C.(2019) Biotransformation of tropical lignocellulosic feedstock using the brown rot fungus serpula lacrymans.Waste and Biomass Valorization. 1–12.

Omarini, A., Dambolena, J.S., Lucini, E., Jaramillo, M. S., Albertó, E., Zygadlo, J.A.(2016) Biotransformation of 1,8-cineole by solid-state fermentation of Eucalyptus waste from the essential oil industry using Pleurotus ostreatus and Favolus tenuiculus.Folia Microbiol. (Praha). , 61:149–157.

Özyurt,G. , Özkütük, A. S., Boğa, M., Durmuş , M., Boğa, E. K. (2017)Biotransformation of seafood processing wastes fermented with natural lactic acid bacteria;The quality of fermented products and their use in animal feeding .Turkish Journal of Fisheries and Aquatic Sciences, 17: 543-555.

Paz, A., Costa Trigo, I., Tugores, F., Miguez, M., Montana, J. and Dominguez, J. M.(2019) Biotransformation of phenolic compounds by Bacillus aryabhattai. Bioprocess and Biosystems Engineering, 10:1-9.

Peeters, L. Auwera, A. V., Beirnaert, C., Bijttebier, S., Laukens, K., Pieters, L., Hermans N. and Foubert, K.(2020) Compound characterization and metabolic profile elucidation after in vitro gastrointestinal and hepatic biotransformation of an Herniaria hirsute extract using unbiased dynamic metabolomic data analysis, Metabolites , 10:1-26.

Peeters, L., Vervliet, P., Foubert, K., Hermans, N., Pieters, L. and Covaci, A. (2020) A comparative study on the in vitro biotransformation of medicagenic acid using human liver microsomes and S9 fractions, Chemico-Biological Interactions, 328 :1-8.

Peng, B., Plan, M.R., Chrysanthopoulos, P., Hodson, M.P., Nielsen, L.K., Vickers, C.E. (2017) A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Metab. Eng., 39:209–219.

Pinelaa, J., Omarinib, A. B., Stojkovićd, D., Barrosa, L., Postemskye, P. D., Calhelhaa, R. C., Brecciab, J., Fernández-Lahorec, M., Sokovićd, M. and Ferreiraa, I. C.F.R.(2020) Biotransformation of rice and sunflower side-streams by dikaryotic and monokaryotic strains of Pleurotus sapidus: Impact on phenolic profiles andbioactive properties . Food Research International, 132:1-10.

Ponnapalli MG, Sura MB, Sudhakar R, Govindarajalu G, Sijwali PS. Biotransformation of Artemisinin to 14- hydroxydeoxyartemisinin: C-14 hydroxylation by Aspergillus flavus. Journal of Agricultural and Food Chemistry. 2018;66:10490-10495. DOI: 10.1021/acs.jafc.8b03573

Qiao, L., Zhou, Y., Qi, X., Lin, L., Chen, H., Pang, L., Pei, Y., (2007) Biotransformation of Cinobufagin by Cunninghamella elegans. J. Antibiot. 60: 261–264.

Rodríguez-Couto S.(2009). Enzymatic biotransformation of synthetic dyes,Current Drug Metabolism, 10, 1048-1054.

Rupasinghe, H. P. V. , Parmar, I. and Neir, S. V. 2020. Biotransformation of cranberry proanthocyanidins to probiotic metabolites by Lactobacillus rhamnosus enhances their anticancer activity in hepg2 cells in vitro. Oxidative Medicine and Cellular Longevity, 2019:1-15.

Rusch, M.,Kauschat, A.,Spielmeyer A.,Rompp, A.,Hausmann, H., Zorn H. and Hamscher, G. (2015) Biotransformation of the Antibiotic Danofloxacin by Xylaria longipes Leads to an Efficient Reduction of Its Antibacterial Activity. J. Agric. Food Chem., 63: 6897–6904.

Ruszczyńska, A., Konopka, A., Kurek, E., Elguera, J. C. T. and Bulska, E. (2017) Investigation of biotransformation of selenium in plants usingspectrometric methods.Spectrochimica Acta Part B, 130: 7–16.

Segura, A. and Ramos J.L. (2013) Plant–bacteria interactions in the removalof pollutants. Curr Opin Biotechnol, 24:467–473.

Shang, Z.,Salim, A. A.,Khalil, Z. , Bernhardt, P. V.,and Capon, R. J.(2016) Fungal biotransformation of tetracycline antibiotics. The Journal of Organic Chemistry: 81, 6186−6194.

Sibaja, K. V. M., Garcia, S.D., Feltrin, A.C.P., Remendi, R.D., Cerqueira, M.R., Badiale-Furlong, E. and Garda-Buffon, J.(2018) Aflatoxin biotransformation by commercial peroxidase and its application on contaminated food. Journal of Chemical Technology & Biotechnology, 94:1-29.

Singh, A., Mukhopadhyay K., & Sachan S. G. (2019) Biotransformation of eugenol to vanillin by a novel strain Bacillus safensis SMS1003. Biocatalysis and Biotransformation, 37: 291-303.

Slencu, B.G., Ciobanu, C., Cuciureanu, R. (2012) Selenium content in foodstuffs and its nutritionalrequirement for human, Clujul Medical 85 : 139–145.

Smitha, M.S., Singh, S., Singh, R. (2017) Microbial biotransformation: a process for chemical alterations .Journal of Bacteriology & Mycology: Open Access, 4:47‒51.

Soares, G.P.A., Souza, K.S.T., Vilela, L.F., Schwan, R.F. and Dias, D.R. (2017) γ-decalactone production by Yarrowia lipolytica and Lindnera saturnus in crude glycerol. Prep. Biochem. Biotechnol. , 47:633–637.

Sonntag, F., Kroner, C., Lubuta, P., Peyraud, R., Horst, A., Buchhaupt, M., Schrader, J. (2015) Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol. Metab. Eng., 32:82–94.

Srivastava S, Luqman S, Fatima A, Dorokar MP, Negi AS, Kumar JK, et al. Biotransformation of artemisinin mediated through fungal strains for obtaining derivatives with novel activities. Scientia Pharmaceutica. 2009; 77:87-95. DOI: 10.3797/scipharm.0803-15.

Sultana, N. (2018) Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation. Steroids, 136: 76–92.

Thakur, N. and Nath, A.K. (2017b) Detection and production of gallic acid from novel fungal strain- Penicillium crustosum AN3 KJ820682. Current Trends Biotechnol Pharm 11:60–66.

Torres-León, C., Ramírez-Guzman, N., Londoño-Hernandez, L., Martinez-Medina, G. A., Díaz-Herrera, R., Navarro-Macias, V., Aguilar, C. N. (2018). Food waste and byproducts: An opportunity to minimize malnutrition and hunger in developing countries. Frontiers in Sustainable Food Systems, 2, 52.

Vijgen, J., Abhilash, P. C., Li, Y.F., Lal, R. , Forter, M. , Torres, J., Singh, N., Yunus, M., Tian C., Schäffer, A., and Weber, R.(2011) Hexachlorocyclohexane (HCH) as new Stockholm convention POPs—a global perspectiveon the management of lindane and its waste isomers. Environ. Sci. Pollut. Res. 18:152–162.

Xu, Y., Yuan, Z. and Ni B.J. (2016) Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes. Science of the Total Environment 566:796–805.

Yang, C., Song, G., Lim, W. (2020) A review of the toxicity in fish exposed to antibiotics Comparative Biochemistry and Physiology, Part C, 237:1-12.

Yang, W., Hadibarata, T., Mahmoud, A.H., Yuniarto, A. (2020) Biotransformation of pyrene in soil in the presence of earthworm Eisenia fetida. Environmental technology and innovation, 18:1-9.

Yu, Y., Zhou, L., Yang, Y., and Liu, Y. (2018) Cycloastragenol: An exciting novel candidate for age associated diseases (Review).Experimental and Therapeutic Medicine, 16: 2175-2182.

Zarev, Y., Popova, P., Foubert, K., Apers, S., Vlietinck, A., Pieters, L., andIonkova, I., (2019)Biotransformation to Produce the Anticancer Compound Colchicoside Using Cell Suspension Cultures of Astragalus vesicarius Plant Species. Natural Product Communications, 14:27 - 29.

Zhan, Y., Liu, H., Wu, Y., Wei, P., Chen, Z., William, J.S. (2015) Biotransformation of artemisinin by Aspergillus niger. Applied Microbiology and Biotechnology, 99:3443-3446.

Zhang, Y., Wang, P., Kong, Q. and Cotty, P.J. (2020) Biotransformation of Aflatoxin B1 by Lactobacillus helviticus FAM 22155 in wheat bran by solid state fermentation. Food Chemistry, 341:1-37.

Zhao, X. and Hardin, I.R. (2007) HPLC and Spectrophotometric analysis of biodegradation of azo dyes by Pleurotus Ostreatus, Dyes pigments, 73:322-325.

Zhou, Q.L., Wang, H.J., Tang, P., Song, H., Qin, Y. (2015) Total Synthesis of Lignan Lactone (–)-Hinokinin. Nat. Prod. Bioprospect. , 5:255–261.

Zumstein, M.T. and Helbling, D. E. (2019) Biotransformation of antibiotics: Exploring the activity of extracellular and intracellular enzymes derived from wastewater microbial communities. Water Research, 155:115-123.

Forti, L., Cramarossa, M.R., Filippucci, S., Tasselli, G., Turchetti, B., Buzzini, P. (2018) Chapter 6- Nonconventional yeast-promoted biotransformation for the Production of flavor compounds. Natural and Artificial Flavoring Agents and Food Dyes. Handbook of Food Bioengineering, 165-187.

Braga, A. and Belo, I. (2014) Production of γ-decalactone by Yarrowia lipolytica: insights into experimental conditions and operating mode optimization. Journal of Chemical Technology and Biotechnology, 90:559-565.

Nagaki, N., Soma, N., Ono, K., Yamanouchi, K., Tsujiguchi, T., Kawakami, J. and Chounan, Y. (2019) Biotransformation of indanol, fluorenol and their analogs using tissue-cultured cells and their antimicrobial activity. Trans. Mat. Res. Soc. Japan, 44:29-33.

Zoghi, M., Gandomkar, S., Habibi, Z. (2019) Biotransformation of progesterone and testosterone enanthate by Circinella muscae. Steroids, 151:1-5.

Tofighi, M., Amini, M., Shirzadi, M., Mirhabibi, H., Saeedi, N.G., Yassa, N. (2016) Vigna radiata as a new source for biotransformation of hydroquinone to arbutin. Pharmaceutical Sciences, 22: 126-131.

Fujitaka, Y., Shimoda, K., Araki, M., Doi, S., Ono, T., Hamada, H. and Hamada, H. (2017) Biotransformation of daidzein to diadzein-7-glucoside and its anti-allergic activity. Natural Product Communications, 12:1741-1742.

Yousuf, M., Mammadova, K., Baghirov S., Rahimova, R. (2019) Biotransformation: A One Pot Method of Novel Pharmacological Importance. Novel App roaches in Drug Designing & Development, 4:1-3.

Gao, F., Zang, J., Wang, Z., Peng, W., Hu, H., Fu, C. (2013)Biotransformation, a promising technology for anti-cancer drug development. Asian Pacific Journal of Cancer Prevention, 14:5599-5608.

Martins, I.M., Roberto,B. S., Blumberg, J. B. Chen, C.-Y. O., Macedo, G.A (2016) Enzymatic biotransformation of polyphenolics increases antioxidant activity of red and white grape pomace. Food Research International, 89: 533-539.

Nakajima, V. M. , Madeira Jr. , J. V. , Macedo , G. A. , Macedo , J. A.(2016) Biotransformation effects on anti lipogenic activity of citrus extracts. Food Chemistry, 197: 1046–1053.

Hosseini , M., Ebrahimi, M., Salehghamari, M., Najafabadi , A. S., Yakhchali, B. (2020) Biotransformation of Isobutyraldehyde to Isobutanol by an Engineered Escherichia coli Strain. Journal of Applied Biotechnology

Reports, 7:159-165.

Kumar, D. & Pannu, R. (2018) Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: a review. Bioresources and Bioprocessing, 5:1-18.

Terzic, S., Udikovic-Kolic , N., Jurina ,T., Krizman-Matasic , I., Senta I., Mihaljevic , I., Loncar, J., Smital, T., Ahel M. (2018) Biotransformation of macrolide antibiotics using enriched activated sludge culture: Kinetics, transformation routes and ecotoxicological evaluation. Journal of Hazardous Materials, 349:143-152.

Zhao , Y., Zhen ,Z., Wang Z., Zeng, L., Yan C.(2020) Influence of environmental factors on arsenic accumulation and biotransformation using the aquatic plant species Hydrilla verticillata. Journal of Environmental Sciences, 90:244-252.

Matta, G. and Gjyli, L. (2016) Mercury, lead and arsenic: impact on environment and human health. Journal of Chemical and Pharmaceutical Sciences, 9: 718-725.

Kaewdoung, B., Sutjaritvorakul, T., Gadd, G. M. , Whalley, A. J.S. & Sihanonth, P. (2016) Heavy metal tolerance and biotransformation of toxic metal compounds by new isolates of wood-rotting fungi from Thailand. Geomicrobiology Journal, 33: 283–288.

Gupta, S. and Nirwan, J. (2014)Evaluation of mercury biotransformation by heavy metal tolerant Alcaligenes strain isolated from industrial sludge. Int. J. Environ. Sci. Technol. 12:995-1002.

Salehi, B., Upadhyay, S., Orhan, I. E. Jugran, A. K. Jayaweera, S. L.D., Dias, D. A., Sharopov, F. , Taheri Y., Martins, N., Baghalpour, N. Cho, W. C. and Sharifi-Rad, J., (2019) Therapeutic Potential of α - and β-Pinene: A Miracle Gift of Nature. Biomolecules, 9:4-34.

Zepf, F. and Jin, B. (2013) Bioconversion of grape marc into protein rich animal feed by microbial fungi. Chemical Engineering & Process Techniques, 1:1-7.

Kaprasob, R., Kerdchoechuen, O., Laohakunjit, N., Sarkar, D., Shetty, K. (2017) Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria. Process. Biochem. 59:141–149.

Liu, J., Liu, B., Zhan, L., Wang, P., Ju, M. and Wu, W. (2017)Solid-state fermentation of ammoniated corn straw to animal feed by Pleurotus ostreatus Pl-5, Bioresourses ,12: 1723-1736.

Jung, J., Jang, H.J., Eom, S.J., Choi, N.S., Lee, N., Paik, H. (2019) Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: ginsenoside conversion and antioxidant effects. Journal of Ginseng Research, 43:20-26.

Kim, K. Lee, S. and Cha, C. (2010) Biotransformation of plant secondary metabolite decursin by mycobacterium sp. Pyr1001. J. Agric. Food Chem., 58: 2931–2934.

Maczka ,W., Sołtysik ,D., Winska ,K., Grabarczyk M. and Szumny, A. (2018) Plant-Mediated Biotransformations of S(+)- and R(–)-Carvones. Applied Sciences, 8:1-13.

Fujitaka, Y., Shimoda, K., Araki, M., Doi, S., Ono, T., Hamada, H., and Hamada, H. (2017) Biotransformation of Daidzein to Diadzein-7-Glucoside and Its Anti-allergic Activity. Natural Product Communications, 12:1741-1742.

Bennamane, M., Razi, S., Zeror, S., Aribi-Zouioueche, L. (2018) Preparation of chiral phenylethanols using various vegetables grown in Algeria. Biocatal. Agric. Biotechnol., 14: 52–56.

Nunes, I.S., Faria, J.M., Figueiredo, A.C., Pedro, L.G., Trindade, H., Barroso, J.G. (2009) Menthol and geraniol biotransformation and glycosylation capacity of Levisticum officinale hairy roots. Planta Med., 75:387–391.

Yan, C., Ma, W., Yan, W., Yu, R. (2008) Biotransformation of furannoligularenone by hairy root cultures of Polygonum multiflorum. Journal of Chinese Medicinal Materials, 31:633–635.

Salter, R., Beshore, D.C., Colletti, S.L., Evans, L., Gong, Y., Helmy, R., Liu, Y., Maciolek, C. M., Martin, G., Pajkovic, N., Phipps, R., Small, J., Steele, J., de Vries, R. Williams, H. & Martin, I.J. (2019) Microbial Biotransformation – An Important Tool for the Study of Drug Metabolism, Xenobiotica, 41:877-886.

Medeiros, T.D.M., Alexandrino, T.D., Pastore, G.M., Bicas, J.L. (2021) Extraction and purification of limonene-1, 2-diol obtained from the fungal biotransformation of limonene. Separation and Purification Technology, 254:1-6.

Sharma, C. and Bhardwaj, N. K. (2019) Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms. International Journal of Biological Macromolecules, 132:166-177.

Martínez, F.G., Moreno-Martin, G, Pescuma, M., Madrid-Albarrán, Y. and Mozzi, F. (2020) Biotransformation of Selenium by Lactic Acid Bacteria: Formation of Seleno-Nanoparticles and Seleno-Amino Acids. Frontiers in Bioengineering Biotechnology, 8:1-17.

Fu,Q., Fedrizzi,D., Kosfeld,V., Schlechtriem, C., Ganz,V., Derrer,S., Rentsch, D. and Hollender, J.(2020) Biotransformation Changes Bioaccumulation and Toxicity of Diclofenac in Aquatic Organisms. Environmental Science and Technology, 54: 4400−4408.

Tadic, Ð., Gramblicka, M., Mistrik, R., Flores, C., Pina ,B. and Bayona, J.M.(2020) Elucidating biotransformation pathways of ofloxacin in lettuce (Lactuca sativa L). Environmental Pollution, 260:1-9.

Panić, M., Elenkov, M. M., Roje, M., Bubalo, M. C. and Redovniković, I. R. (2018) Plant-mediated stereoselective biotransformations in natural deep eutectic solvents. Process Biochemistry, 66:133-139.

Ma˛czka, W., Win´ska, K., Grabarczyk, M. and Galek, R. (2019) Plant-Mediated Enantioselective Transformation of Indan-1-One and Indan-1-ol. Catalysts, 9:1-10.

Akhtar, M. T., Shaari, K. and Verpoorte, R. (2015) Biotransformation of Tetrahydrocannabinol. Phytochemisty reviews, 15:921–934.

Smitha, M.S., Singh, S. and Singh, R. (2017) Microbial biotransformation: a process for chemical alterations. Journal of Bacteriology & Mycology, 4:47‒51.

Zafar, S., Ahmed, R. and Khan, R. (2016) Biotransformation: a green and efficient way of antioxidant synthesis. Free Radical Research, 50: 939–948.

Wang, G.-H., Chen, C.-Y., Tsai, T-H., Chen, C.-K. Cheng, C.-Y. Huang, Y.-H. Hsieh, M.-C. and Chung,Y.-C. Evaluation of tyrosinase inhibitory and antioxidant activities of Angelica dahurica root extracts for four different probiotic bacteria fermentations.Journal of Bioscience and Bioengineering, 123: 679-684.

Hu, X., Liu, Y., Li, D., Feng, W., Ni, H., Cao, S., Lu, F., and Li, Y., 2019.An innovative biotransformation to produce resveratrol by Bacillus safensis. Royal Society of Chemistry, 9: 15448–15456.

Bier,M. C., Medeiros,A. B., Kimpe, N. D.,Soccol, C. R. (2019) Evaluation of antioxidant activity of the fermented product from the biotransformation of R-(+)-limonene in solid-state fermentation of orange waste by Diaporthe sp. Biotechnology Research and Innovation ,3:168-176.

Downloads

Published

2022-06-30

How to Cite

Roy, P. S. D., Singh, B., Sharma, V., & Thappa, C. (2022). Biotransformation: A Novel Approach of Modulating and Synthesizing Compounds. Journal for Research in Applied Sciences and Biotechnology, 1(2), 68–82. https://doi.org/10.55544/jrasb.1.2.8

Issue

Section

Articles