Article Review: Biochemical Aspect of Survivin Hormone

Authors

  • Noori Mohammed Aziz Department of Chemistry, College of Education for Pure Science, Kirkuk University, Kirkuk, IRAQ.
  • Wisam Sbhan Khalf Mohamed General Directorate of Education in Kirkuk Governorate, Kirkuk, IRAQ.

DOI:

https://doi.org/10.55544/jrasb.1.5.1

Keywords:

Apoptosis, Survivin, Immunotherapeutic, Endometrial

Abstract

A cancer gene called survivin is muted in cells which have undergone differentiation, but it is highly qualitative sample in the overwhelming proportion of malignancies. Over subsequent decades, there has been a lot of curiosity in it. Inhibiting apoptotic, encouraging mitotic, and increasing vascular formation while producing cytotoxic drugs are several crucial characteristics that define it is a good target. These processes, that together promote carcinogenic behaviour, cover the whole spectrum of carcinogenesis, encompassing growth, migratory, or infiltration. Survivin identification independently or coupled in blood and/or urine has become a diagnostic tool for prostate cancer. Furthermore, a number of researches showed that abnormal survivin transcription is linked to a poor prognosis or radiation/drug resistance. Early findings from approaches that target survivin in the treatment of breast carcinoma are encouraging. In order to clarify how this intriguing chemical performs such contradictory function, researchers outline its involvement in the detection, prognosis, as well as therapy of melanoma in this review.

The IAP enzyme group, which includes the survival protein (SVN), stimulates cell growth or prevents apoptosis. As a biomarker for autoimmune conditions, hyper plasia, or malignancies, accumulation of Survivin is linked to these conditions. Increasingly acknowledged like a tumor-associated antigen (TAA), SVN has emerged as a crucial focus for the detection or management of malignancy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

de Necochea-Campio R, Chen C-S, Mirshahidi S, Howard FD, Wall NR. Clinico-pathologic relevance of Survivin splice variant expression. Cancer Lett. 2013;339:167–74.

CE Desantis, J Ma MM Gaudet, LA Newman, KD Miller, Breast cancer statistics, 2019CA Cancer J Clin 2019; 69; 643-851.

H Çiçek Ö Saygılı ÖN Sever V Kaya H Ulusal M Yıldırım The Diagnostic Role of A-kinase Anchoring Protein 12, Bcl-2 and High Mobility Group Box Protein-1 Levels in Breast CancerJ Oncol Sci201953905

RL Siegel KD Miller A Jemal Cancer statisticsCA Cancer J Clin2018681730

SJ Gould G Raposo As we wait: Coping with an imperfect nomenclature for extracellular vesiclesJ Extracell Vesicles2013210.3402/jev.v2i0.20389

M Colombo G Raposo C Théry Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesiclesAnnu Rev Cell Dev Biol20143025589

G Raposo HW Nijman W Stoorvogel R Liejendekker CV Harding CJ Melief B lymphocytes secrete antigen-presenting vesiclesJ Exp Med19961833116172

G Raposo W Stoorvogel Extracellular vesicles: exosomes, microvesicles, and friendsJ Cell Biol2013200437383

C Tetta E Ghigo L Silengo MC Deregibus G Camussi Extracellular vesicles as an emerging mechanism of cell-to-cell communicationEndocrine2013441119

KW Witwer EI Buzas LT Bemis A Bora C Lässer J Lötvall Standardization of sample collection, isolation and analysis methods in extracellular vesicle researchJ Extracell Vesicles2013210.3402/jev.v2i0.20360

M Colombo G Raposo C Thery Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesiclesAnnu Rev Cell Dev Biol20143025589

OA Oto S Paydas K Tanriverdi G Seydaoglu S Yavuz U Disel Survivin and EPR-1 expression in acute leukemias: prognostic significance and review of the literatureLeuk Res200731111495501

DC Altieri The case for survivin as a regulator of microtubule dynamics and cell-death decisionsCurr Opin Cell Biol20061860915

S Khan JR Aspe MG Asumen F Almaguel O Odumosu S Acevedo-Martinez cell-permeable survivin inhibits apoptosis while promoting proliferative and metastatic potentialBr J Cancer20091007107386

T Dohi E Beltrami NR Wall J Plescia DC Altieri Mitochondrial survivin inhibits apoptosis and promotes tumorigenesisJ Clin Invest20041148111727

PE Chugh SH Sin S Ozgur DH Henry P Menezes J Griffith Systemically Circulating Viral and Tumor-Derived MicroRNAs in KSHV-Associated MalignanciesPLoS Pathog201397e100348410.1371/journal.ppat.1003484

T Umezu K Ohyashiki M Kuroda JH Ohyashiki Leukemia cell to endothelial cell communication via exosomal miRNAsOncogene2013222274755

R Morton M Sayma MS Sura Economic analysis of the breast cancer screening program used by the UK NHS: should the program be maintained? Breast Cancer (Dove Med Press)2017921725

X Yu SL Harris AJ Levine The regulation of exosome secretion: a novel function of the p53 proteinCancer Res200666947954801

M Gunaldi N Isiksacan H Kocoglu Y Okuturlar O Gunaldi TO Topcu The value of serum survivin level in early diagnosis of cancerJ Cancer Res Ther20181435703

S Wang J Xu Q Zhang Clinical significance of survivin and vascular endothelial growth factor mRNA detection in the peripheral whole blood of breast cancer patientsNeoplasma201663113340

C Xu M Yamamoto-Ibusuki Y Yamamoto High survivin mRNA expression is a predictor of poor prognosis in breast cancer: a comparative study at the mRNA and protein levelBreast Cancer201421448290.

Doucette T, Latha K, Yang Y, Fuller GN, Rao A, Rao G. Survivin transcript variant 2 drives angiogenesis and malignant progression in proneural gliomas. Neuro Oncol. 2014;16(9):1220–8.

Khan S, Bennit HF, Wall NR. The emerging role of exosomes in Survivin secretion. Histol Histopathol. 2015;30(1):43–50.

Valenzuela MMA, Ferguson Bennit HR, Gonda A, Diaz Osterman CJ, Hibma A, Khan S, Wall NR. Exosomes secreted from human cancer cell lines contain inhibitors of apoptosis (IAP). Cancer Microenviron. 2015;8(2):65–73.

Miller R.L., Siegel K.D., Lin A., Mariotto A.B., Kramer J.L., Rowland J.H., et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin. 2016;66:271–289.

Witjes J.A., Compérat E., Cowan N.C., De Santis M., Gakis G., Lebret T., et al. EAU guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2013 guidelines. Eur. Urol. 2014;65:778–792.

Felsenstein K.M., Theodorescu D. Precision medicine for urothelial bladder cancer: update on tumour genomics and immunotherapy. Nat. Rev. Urol. 2018;15:92–111.

Lawrence M.S., Stojanov P., Polak P., Kryukov G.V., Cibulskis K., Sivachenko A., et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–218.

Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–322.

Robertson A.G., Kim J., Al-Ahmadie H., Bellmunt J., Guo G., Cherniack A.D., et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 2017;171:540–556.e25.

Audenet F., Attalla K., Sfakianos J.P. The evolution of bladder cancer genomics: what have we learned and how can we use it? Urol. Oncol. 2018;36:313–320.

Rodriguez-Vida A., Lerner S.P., Bellmunt J. The cancer genome atlas project in bladder cancer. Cancer Treat. Res. 2018;175:259–271.

Warrick J.I., Walter V., Yamashita H., Chung E., Shuman L., Amponsa V.O., et al. FOXA1, GATA3 and PPAR cooperate to drive luminal subtype in bladder cancer: a molecular analysis of established human cell lines. Sci. Rep. 2016;6.

Rosenberg J.E., Hoffman-Censits J., Powles T., van der Heijden M.S., Balar A.V., Necchi A., et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–1920.

Korpal M., Puyang X., Jeremy Wu Z., Seiler R., Furman C., Oo H.Z., et al. Evasion of immunosurveillance by genomic alterations of PPARγ/RXRα in bladder cancer. Nat. Commun. 2017;8:103.

Goldstein J.T., Berger A.C., Shih J., Duke F.F., Furst L., Kwiatkowski D.J., et al. Genomic activation of PPARG reveals a candidate therapeutic axis in bladder cancer. Cancer Res. 2017;77:6987–6998.

Halstead A.M., Kapadia C.D., Bolzenius J., Chu C.E., Schriefer A., Wartman L.D., et al. Bladder-cancer-associated mutations in RXRA activate peroxisome proliferator-activated receptors to drive urothelial proliferation. Elife. 2017;6.

Sweis R.F., Spranger S., Bao R., Paner G.P., Stadler W.M., Steinberg G., et al. Molecular drivers of the non-T-cell-inflamed tumor microenvironment in urothelial bladder cancer. Cancer Immunol. Res. 2016;4:563–568.

Davidson M.A., Mattison D.R., Azoulay L., Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit. Rev. Toxicol. 2018;48:52–108.

Gampe R.T., Jr., Montana V.G., Lambert M.H., Miller A.B., Bledsoe R.K., Milburn M.V., et al. Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol. Cell. 2000;5:545–555.

Rochel N., Krucker C., Coutos-Thévenot L., Osz J., Zhang R., Guyon E., et al. Recurrent activating mutations of PPARgamma associated with luminal bladder tumors. Nat. Commun. 2019;10:253.

Marciano D.P., Kuruvilla D.S., Boregowda S.V., Asteian A., Hughes T.S., Garcia-Ordonez R., et al. Pharmacological repression of PPARgamma promotes osteogenesis. Nat. Commun. 2015;6:7443.

Itoh T., Fairall L., Amin K., Inaba Y., Szanto A., Balint B.L., et al. Structural basis for the activation of PPARgamma by oxidized fatty acids. Nat. Struct. Mol. Biol. 2008;15:924–931.

Brust R., Shang J., Fuhrmann J., Mosure S.A., Bass J., Cano A., et al. A structural mechanism for directing corepressor-selective inverse agonism of PPARgamma. Nat. Commun. 2018;9:4687.

Shang J., Mosure S.A., Zheng J., Brust R., Bass J., Nichols A., et al. A molecular switch regulating transcriptional repression and activation of PPARgamma. Nat. Commun. 2020;11:956.

Lamotte Y., Martres P., Faucher N., Laroze A., Grillot D., Ancellin N., et al. Synthesis and biological activities of novel indole derivatives as potent and selective PPARgamma modulators. Bioorg. Med. Chem. Lett. 2010;20:1399–1404.

Choi J.H., Banks A.S., Kamenecka T.M., Busby S.A., Chalmers M.J., Kumar N., et al. Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation. Nature. 2011;477:477–481.

Yasar P, Ayaz G, User SD, Gupur G, Muyan M. Molecular Mechanism of Estrogen-Estrogen Receptor Signaling. Reprod Med Biol (2017) 16:4–20. doi: 10.1002/rmb2.12006.

Smith A, Rønnekleiv O, Kelly MJS. Gq-mER Signaling has Opposite Effects on Hypothalamic Orexigenic and Anorexigenic Neurons. Steroids (2014) 81:31–5. doi: 10.1016/j.steroids.2013.11.007.

Prossnitz ER, Barton M. Estrogen Biology: New Insights Into GPER Function and Clinical Opportunities. Mol Cell Endocrinol (2014) 389:71–83. doi: 10.1016/j.mce.2014.02.002

Jacenik D, Cygankiewicz AI, Krajewska WM. The G Protein-Coupled Estrogen Receptor as a Modulator of Neoplastic Transformation. Mol Cell Endocrinol (2016) 429:10–8. doi: 10.1016/j.mce.2016.04.011.

Wong MM, Guo C, Zhang J. Nuclear Receptor Corepressor Complexes in Cancer: Mechanism, Function and Regulation. Am J Clin Exp Urol (2014) 2:169–87.

Tang ZR, Zhang R, Lian ZX, Deng SL, Yu K. Estrogen-Receptor Expression and Function in Female Reproductive Disease. Cells (2019) 8:1123. doi: 10.3390/cells8101123.

Xu Z, Zhang L, Yu Q, Zhang Y, Yan L, Chen Z-J. The Estrogen-Regulated lncRNA H19/miR-216a-5p Axis Alters Stromal Cell Invasion and Migration via ACTA2 in Endometriosis. Mol Hum Reprod (2019) 25:550–61. doi: 10.1093/molehr/gaz040.

Artimani T, Saidijam M, Aflatoonian R, Amiri I, Ashrafi M, Shabab N, et al. Estrogen and Progesterone Receptor Subtype Expression in Granulosa Cells From Women With Polycystic Ovary Syndrome. Gynecol Endocrinol (2015) 31:379–83. doi: 10.3109/09513590.2014.1001733.

Han SJ, Jung SY, Wu S-P, Hawkins SM, Park MJ, Kyo S, et al. . Estrogen Receptor β Modulates Apoptosis Complexes and the Inflammasome to Drive the Pathogenesis of Endometriosis. Cell (2015) 163:960–74. doi: 10.1016/j.cell.2015.10.034.

Sanderson PA, Critchley HOD, Williams ARW, Arends MJ, Saunders PTK. New Concepts for an Old Problem: The Diagnosis of Endometrial Hyperplasia. Hum Reprod Update (2017) 23:232–54. doi: 10.1093/humupd/dmw042.

Rodriguez AC, Blanchard Z, Maurer KA, Gertz J. Estrogen Signaling in Endometrial Cancer: A Key Oncogenic Pathway With Several Open Questions. Horm Cancer-Us (2019) 10:51–63. doi: 10.1007/s12672-019-0358-9.

Hu GL, Zhang JB, Zhou XY, Liu JW, Wang Q, Zhang B. Roles of Estrogen Receptor Alpha and Beta in the Regulation of Proliferation in Endometrial Carcinoma. Pathol Res Pract (2020) 216:153149. doi: 10.1016/j.prp.2020.153149.

Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. . Cell-Of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors From 33 Types of Cancer. Cell (2018) 173:291–304. doi: 10.1016/j.cell.2018.03.022.

Backes FJ, Walker CJ, Goodfellow PJ, Hade EM, Agarwal G, Mutch D, et al. . Estrogen Receptor-Alpha as a Predictive Biomarker in Endometrioid Endometrial Cancer. Gynecol Oncol (2016) 141:312–7. doi: 10.1016/j.ygyno.2016.03.006

Blanchard Z, Vahrenkamp JM, Berrett KC, Arnesen S, Gertz J. Estrogen-Independent Molecular Actions of Mutant Estrogen Receptor 1 in Endometrial Cancer. Genome Res (2019) 29:1429–41. doi: 10.1101/gr.244780.118.

Rodriguez AC, Vahrenkamp JM, Berrett KC, Clark KA, Guillen KP, Scherer SD, et al. . ETV4 Is Necessary for Estrogen Signaling and Growth in Endometrial Cancer Cells. Cancer Res (2020) 80:1234–45. doi: 10.1158/0008-5472.can-19-1382.

Qi Y, Tan M, Zheng M, Jin S, Wang H, Liu J, et al. . Estrogen/estrogen Receptor Promotes the Proliferation of Endometrial Carcinoma Cells by Enhancing hMOF Expression. Jpn J Clin Oncol (2020) 50:241–53. doi: 10.1093/jjco/hyz174.

D’Alonzo M, Bounous VE, Villa M, Biglia N. Current Evidence of the Oncological Benefit-Risk Profile of Hormone Replacement Therapy. Med (Kaunas Lithuania) (2019) 55:573. doi: 10.3390/medicina55090573.

Marjoribanks J, Farquhar C, Roberts H, Lethaby A, Lee J. Long-Term Hormone Therapy for Perimenopausal and Postmenopausal Women. Cochrane Database Syst Rev (2017) 1:CD004143. doi: 10.1002/14651858.CD004143.pub5.

Nijkang NP, Anderson L, Markham R, Manconi F. Endometrial Polyps: Pathogenesis, Sequelae and Treatment. SAGE Open Med (2019) 7:2050312119848247. doi: 10.1177/2050312119848247.

Tergas AI, Buell-Gutbrod R, Gwin K, Kocherginsky M, Temkin SM, Fefferman A, et al. . Clinico-Pathologic Comparison of Type II Endometrial Cancers Based on Tamoxifen Exposure. Gynecol Oncol (2017) 127:316–20.

Carneiro ALB, Spadella APC, Souza FA, Alves KBF, Araujo-Neto JT, Haidar MA, et al. . Effects of Raloxifene Combined With Low-Dose Conjugated Estrogen on the Endometrium in Menopausal Women at High Risk for Breast Cancer. Clinics (Sao Paulo Brazil) (2021) 76:e2380.

Petrie WK, Dennis MK, Hu C, Dai D, Arterburn JB, Smith HO, et al. Protein-Coupled Estrogen Receptor-Selective Ligands Modulate Endometrial Tumor Growth. Obstet Gynecol Int (2019) 2019:472720.

Komm BS, Mirkin S. An Overview of Current and Emerging SERMs. J Steroid Biochem Mol Biol (2021) 143:207–22.

Altintas D, Kokcu A, Kandemir B, Tosun M, Cetinkaya MB. Comparison of the Effects of Raloxifene and Anastrozole on Experimental Endometriosis. Eur J Obstet Gyn R B (2018) 150:84–7.

Haring J, Skrzypczak M, Stegerer A, Lattrich C, Weber F, Gorse R, et al. . Estrogen Receptor Beta Transcript Variants Associate With Oncogene Expression in Endometrial Cancer. Int J Mol Med (2012) 29:1127–36.

Smuc T, Rizner TL. Aberrant Pre-Receptor Regulation of Estrogen and Progesterone Action in Endometrial Cancer. Mol Cell Endocrinol (2009) 301:74–82.

Downloads

Published

2022-12-01

How to Cite

Aziz, N. M., & Mohamed, W. S. K. (2022). Article Review: Biochemical Aspect of Survivin Hormone. Journal for Research in Applied Sciences and Biotechnology, 1(5), 1–15. https://doi.org/10.55544/jrasb.1.5.1