Plant & Its Derivative Shows Therapeutic Activity on Neuroprotective Effect

Authors

  • Dr. Yogendra Singh Director, School of Pharmacy, Maharaja Agrasen University, Baddi, Himachal Pradesh, INDIA.
  • Shravan Kumar Paswan Senior Research Fellow, All India Institute of Medical Sciences (AIIMS), New Delhi-110029, INDIA.
  • Roshan Kumar Research Scholar, Department of Pharmacology, Dev Bhoomi Institute of Pharmacy and Research, Dehradun, Uttarakhand, INDIA.
  • Mihir Kedarbhai Otia Pharmaceutical Technology, Babaria Institute of Pharmacy, Vadodara, Gujarat Technological University, Gujarat, INDIA.
  • Smita Acharya PG Scholar, Alwar Pharmacy College, Alwar, Rajasthan, INDIA.
  • Devinder Kumar Asst. Professor, Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Punjab, INDIA.
  • Dr. Keshamma E. Associate Professor, Department of Biochemistry, Maharani Cluster University, Palace Road, Bangalore – 560001, INDIA.

DOI:

https://doi.org/10.55544/jrasb.1.2.2

Keywords:

Herbal Plants, Phyto-chemical Study, Neuro-disease, Parkinson disease, Alzheimer disease

Abstract

In most cases, the death of neurons in certain parts of the brain is the defining feature of a condition that is classified as neurodegenerative. There have been studies conducted on both conventional and innovative drugs, however the results have shown that they only offer symptomatic advantages and come with a number of undesirable side effects. The finding of more potent compounds that can stop the pathophysiology of these diseases will be seen as a miracle in the present day. There is a wide variety of synthetic compounds accessible; nevertheless, these drugs may also create a broad range of additional health issues. As a consequence of this, scientists are looking to plants and other natural sources for the development of new medicines. In the practise of conventional medicine, it has been discovered that certain plants possess healing powers. The use of phytochemicals, which are produced from medicinal plants, may eventually replace the need for synthetic molecules. Numerous phytochemicals have been shown to be effective in the treatment of a wide range of diseases. This article discusses the potential therapeutic applications of plant-derived alkaloids for a number of neurodegenerative disorders (NDDs), including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), epilepsy, schizophrenia, and stroke. There are many different types of alkaloids that can be found in the plant kingdom. Some of these alkaloids include isoquinoline, indole, pyrroloindole, oxindole, piperidine, pyridine, aporphine, vinca, -carboline, methylxanthene, lycopodium, and erythrine byproducts. Alkaloids have a beneficial effect on the pathophysiology of these diseases because of their ability to act as muscarinic and adenosine receptor agonists, anti-oxidants, anti-amyloid and MAO inhibitors, acetylcholinestrase and butyrylcholinesterase inhibitors, an inhibitor of synuclein aggregation, dopaminergic and nicotine agonists, and NMDA antagonists.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Fischer R., Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxidative Medicine and Cellular Longevity. 2015;2015:18. doi: 10.1155/2015/610813.610813

Procaccio V., Bris C., Chao de la Barca J. M., et al. Perspectives of drug-based neuroprotection targeting mitochondria. Revue Neurologique. 2014;170(5):390–400. doi: 10.1016/j.neurol.2014.03.005.

Talarowska M., Bobińska K., Zajaczkowska M., Su K.-P., Maes M., Gałecki P. Impact of oxidative/nitrosative stress and inflammation on cognitive functions in patients with recurrent depressive disorders. Medical Science Monitor. 2014;20:110–115. doi: 10.12659/msm.889853.

Ballard C., Gauthier S., Corbett A., Brayne C., Aarsland D., Jones E. Alzheimer's disease. The Lancet. 2011;377(9770):1019–1031. doi: 10.1016/s0140-6736(10)61349-9

Joseph T. B., Wang S. W. J., Liu X., et al. Disposition of flavonoids via enteric recycling: enzyme stability affects characterization of prunetin glucuronidation across species, organs, and UGT isoforms. Molecular Pharmaceutics. 2007;4(6):883–894. doi: 10.1021/mp700135a.

Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. Journal of Nutritional Biochemistry. 2007;18(7):427–442. doi: 10.1016/j.jnutbio.2006.11.004.

Chiva-Blanch G., Urpi-Sarda M., Llorach R., et al. Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: a randomized clinical trial. The American Journal of Clinical Nutrition. 2012;95(2):326–334. doi: 10.3945/ajcn.111.022889.

Rieder S. A., Nagarkatti P., Nagarkatti M. Multiple anti-inflammatory pathways triggered by resveratrol lead to amelioration of staphylococcal enterotoxin B-induced lung injury. British Journal of Pharmacology. 2012;167(6):1244–1258. doi: 10.1111/j.1476-5381.2012.02063.x.

Gatson J. W., Liu M.-M., Abdelfattah K., et al. Resveratrol decreases inflammation in the brain of mice with mild traumatic brain injury. Journal of Trauma and Acute Care Surgery. 2013;74(2):470–475. doi: 10.1097/ta.0b013e31827e1f51.

Rice-Evans C. A., Miller N. J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine. 1996;20(7):933–956. doi: 10.1016/0891-5849(95)02227-9.

Pignatelli P., Ghiselli A., Buchetti B., et al. Polyphenols synergistically inhibit oxidative stress in subjects given red and white wine. Atherosclerosis. 2006;188(1):77–83. doi: 10.1016/j.atherosclerosis.2005.10.025.

Wright B., Moraes L. A., Kemp C. F., et al. A structural basis for the inhibition of collagen-stimulated platelet function by quercetin and structurally related flavonoids. British Journal of Pharmacology. 2010;159(6):1312–1325. doi: 10.1111/j.1476-5381.2009.00632.x.

Jacobson K. A., Moro S., Manthey J. A., West P. L., Ji X.-D. Interactions of flavones and other phytochemicals with adenosine receptors. Advances in Experimental Medicine and Biology. 2002;505:163–171. doi: 10.1007/978-1-4757-5235-9_15.

Pawlikowska-Pawlega B., Ignacy Gruszecki W., Misiak L., et al. Modification of membranes by quercetin, a naturally occurring flavonoid, via its incorporation in the polar head group. Biochimica et Biophysica Acta—Biomembranes. 2007;1768(9):2195–2204. doi: 10.1016/j.bbamem.2007.05.027.

Zhong S.-Z., Ge Q.-H., Qu R., Li Q., Ma S.-P. Paeonol attenuates neurotoxicity and ameliorates cognitive impairment induced by d-galactose in ICR mice. Journal of the Neurological Sciences. 2009;277(1-2):58–64. doi: 10.1016/j.jns.2008.10.008.

Kim J. K., Bae H., Kim M.-J., et al. Inhibitory effect of poncirus trifoliate on acetylcholinesterase and attenuating activity against trimethyltin-induced learning and memory impairment. Bioscience, Biotechnology and Biochemistry. 2009;73(5):1105–1112. doi: 10.1271/bbb.80859.

Kim T. I., Lee Y. K., Park S. G., et al. l-Theanine, an amino acid in green tea, attenuates β-amyloid-induced cognitive dysfunction and neurotoxicity: reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-κB pathways. Free Radical Biology and Medicine. 2009;47(11):1601–1610. doi: 10.1016/j.freeradbiomed.2009.09.008.

Chuang D. Y., Chan M.-H., Zong Y., et al. Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. Journal of Neuroinflammation. 2013;10, article 15 doi: 10.1186/1742-2094-10-15.

Ono K., Yoshiike Y., Takashima A., Hasegawa K., Naiki H., Yamada M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer's disease. Journal of Neurochemistry. 2003;87(1):172–181. doi: 10.1046/j.1471-4159.2003.01976.x.

Sergent T., Piront N., Meurice J., Toussaint O., Schneider Y.-J. Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chemico-Biological Interactions. 2010;188(3):659–667. doi: 10.1016/j.cbi.2010.08.007.

Cannon J. R., Greenamyre J. T. Progress in Brain Research. chapter 2. Vol. 184. Elsevier; 2010. Neurotoxic in vivo models of Parkinson's disease: recent advances; pp. 17–33.

Haseloff R. F., Blasig I. E., Bauer H.-C., Bauer H. In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cellular and Molecular Neurobiology. 2005;25(1):25–39. doi: 10.1007/s10571-004-1375-x.

Zlokovic B. V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201. doi: 10.1016/j.neuron.2008.01.003.

Hossmann K.-A. Viability thresholds and the penumbra of focal ischemia. Annals of Neurology. 1994;36(4):557–565. doi: 10.1002/ana.410360404.

Drake C. T., Iadecola C. The role of neuronal signaling in controlling cerebral blood flow. Brain and Language. 2007;102(2):141–152. doi: 10.1016/j.bandl.2006.08.002.

Lo E. H., Dalkara T., Moskowitz M. A. Mechanisms, challenges and opportunities in stroke. Nature Reviews Neuroscience. 2003;4(5):399–415. doi: 10.1038/nrn1106.

Lok J., Gupta P., Guo S., et al. Cell-cell signaling in the neurovascular unit. Neurochemical Research. 2007;32(12):2032–2045. doi: 10.1007/s11064-007-9342-9.

Melzer T. R., Watts R., MacAskill M. R., et al. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease. Brain. 2011;134(3):845–855. doi: 10.1093/brain/awq377.

Spillantini M. G., Schmidt M. L., Lee V. M.-Y., Trojanowski J. Q., Jakes R., Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839–840. doi: 10.1038/42166.

Burack M. A., Hartlein J., Flores H. P., Taylor-Reinwald L., Perlmutter J. S., Cairns N. J. In vivo amyloid imaging in autopsy-confirmed Parkinson disease with dementia. Neurology. 2010;74(1):77–84. doi: 10.1212/WNL.0b013e3181c7da8e.

Iqbal K., Grundke-Iqbal I. Alzheimer's disease, a multifactorial disorder seeking multitherapies. Alzheimer's and Dementia. 2010;6(5):420–424. doi: 10.1016/j.jalz.2010.04.006.

Anderson J. M., Hampton D. W., Patani R., et al. Abnormally phosphorylated tau is associated with neuronal and axonal loss in experimental autoimmune encephalomyelitis and multiple sclerosis. Brain. 2008;131(7):1736–1748. doi: 10.1093/brain/awn119.

Shaw B. F., Valentine J. S. How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends in Biochemical Sciences. 2007;32(2):78–85. doi: 10.1016/j.tibs.2006.12.005.

Uttara B., Singh A. V., Zamboni P., Mahajan R. T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology. 2009;7(1):65–74. doi: 10.2174/157015909787602823.

Dröge W. Free radicals in the physiological control of cell function. Physiological Reviews. 2002;82(1):47–95. doi: 10.1152/physrev.00018.2001.

Von Bernhardi R., Eugenín J. Alzheimer's disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms. Antioxidants and Redox Signaling. 2012;16(9):974–1031. doi: 10.1089/ars.2011.4082.

Halliwell B. Oxidative stress and neurodegeneration: where are we now? Journal of Neurochemistry. 2006;97(6):1634–1658. doi: 10.1111/j.1471-4159.2006.03907.x.

Melo A., Monteiro L., Lima R. M. F., de Oliveira D. M., de Cerqueira M. D., El-Bachá R. S. Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. Oxidative Medicine and Cellular Longevity. 2011;2011:14. doi: 10.1155/2011/467180.467180

Chiurchiù V., MacCarrone M. Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxidants and Redox Signaling. 2011;15(9):2605–2641. doi: 10.1089/ars.2010.3547.

Lee I.-T., Yang C.-M. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochemical Pharmacology. 2012;84(5):581–590. doi: 10.1016/j.bcp.2012.05.005.

DiMauro S., Schon E. A. Mitochondrial disorders in the nervous system. Annual Review of Neuroscience. 2008;31:91–123. doi: 10.1146/annurev.neuro.30.051606.094302.

Lustbader J. W., Cirilli M., Lin C., et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science. 2004;304(5669):448–452. doi: 10.1126/science.1091230.

Caspersen C., Wang N., Yao J., et al. Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. The FASEB Journal. 2005;19(14):2040–2041. doi: 10.1096/fj.05-3735fje.

Manczak M., Anekonda T. S., Henson E., Park B. S., Quinn J., Reddy P. H. Mitochondria are a direct site of Aβ accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Human Molecular Genetics. 2006;15(9):1437–1449. doi: 10.1093/hmg/ddl066

Parker W. D., Jr., Boyson S. J., Parks J. K. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Annals of Neurology. 1989;26(6):719–723. doi: 10.1002/ana.410260606.

Shi P., Gal J., Kwinter D. M., Liu X., Zhu H. Mitochondrial dysfunction in amyotrophic lateral sclerosis. Biochimica et Biophysica Acta—Molecular Basis of Disease. 2010;1802(1):45–51. doi: 10.1016/j.bbadis.2009.08.012.

Streit W. J., Kincaid-Colton C. A. The brain's immune system. Scientific American. 1995;273(5):54–61. doi: 10.1038/scientificamerican1195-54.

Kim Y. S., Joh T. H. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Experimental and Molecular Medicine. 2006;38(4):333–347. doi: 10.1038/emm.2006.40.

McGeer E. G., McGeer P. L. The role of anti-inflammatory agents in Parkinson's disease. CNS Drugs. 2007;21(10):789–797. doi: 10.2165/00023210-200721100-00001.

Eikelenboom P., Bate C., Van Gool W. A., et al. Neuroinflammation in Alzheimer's disease and prion disease. Glia. 2002;40(2):232–239. doi: 10.1002/glia.10146.

Sanders P., De Keyser J. Janus faces of microglia in multiple sclerosis. Brain Research Reviews. 2007;54(2):274–285. doi: 10.1016/j.brainresrev.2007.03.001

Locksley R. M., Killeen N., Lenardo M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104(4):487–501. doi: 10.1016/s0092-8674(01)00237-9.

Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radical Research. 1993;18(4):195–199. doi: 10.3109/10715769309145868.

Skrzydlewska E., Ostrowska J., Farbiszewski R., Michalak K. Protective effect of green tea against lipid peroxidation in the rat liver, blood serum and the brain. Phytomedicine. 2002;9(3):232–238. doi: 10.1078/0944-7113-00119.

Yokozawa T., Nakagawa T., Kitani K. Antioxidative activity of green tea polyphenol in cholesterol-fed rats. Journal of Agricultural and Food Chemistry. 2002;50(12):3549–3552. doi: 10.1021/jf020029h.

Negishi H., Xu J.-W., Ikeda K., Njelekela M., Nara Y., Yamori Y. Black and green tea polyphenols attenuate blood pressure increases in stroke-prone spontaneously hypertensive rats. Journal of Nutrition. 2004;134(1):38–42.

Mello-Filho A. C., Meneghini R. Iron is the intracellular metal involved in the production of DNA damage by oxygen radicals. Mutation Research. 1991;251(1):109–113. doi: 10.1016/0027-5107(91)90220-i.

Bhattacharya M., Ponka P., Hardy P., et al. Prevention of postasphyxia electroretinal dysfunction with a pyridoxal hydrazone. Free Radical Biology and Medicine. 1997;22(1-2):11–16. doi: 10.1016/s0891-5849(96)00274-2.

Ling Dong Kong, Cheng C. H. K., Ren Xiang Tan Monoamine oxidase inhibitors from rhizoma of Coptis chinensis . Planta Medica. 2001;67(1):74–76. doi: 10.1055/s-2001-10874.

Owuor E. D., Kong A.-N. T. Antioxidants and oxidants regulated signal transduction pathways. Biochemical Pharmacology. 2002;64(5-6):765–770. doi: 10.1016/s0006-2952(02)01137-1.

Scalbert A., Johnson I. T., Saltmarsh M. Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition. 2005;81(1, supplement):215S–217S.

Vuong T., Matar C., Ramassamy C., Haddad P. S. Biotransformed blueberry juice protects neurons from hydrogen peroxide-induced oxidative stress and mitogen-activated protein kinase pathway alterations. British Journal of Nutrition. 2010;104(5):656–663. doi: 10.1017/S0007114510001170.

Asadi S., Ahmadiani A., Esmaeili M. A., Sonboli A., Ansari N., Khodagholi F. In vitro antioxidant activities and an investigation of neuroprotection by six Salvia species from Iran: a comparative study. Food and Chemical Toxicology. 2010;48(5):1341–1349. doi: 10.1016/j.fct.2010.02.035.

Wang C.-J., Hu C.-P., Xu K.-P., et al. Protective effect of selaginellin on glutamate-induced cytotoxicity and apoptosis in differentiated PC12 cells. Naunyn-Schmiedeberg's Archives of Pharmacology. 2010;381(1):73–81. doi: 10.1007/s00210-009-0470-4.

Mascolo N., Jain R., Jain S. C., Capasso F. Ethnopharmacologic investigation of ginger (Zingiber officinale) Journal of Ethnopharmacology. 1989;27(1-2):129–140. doi: 10.1016/0378-8741(89)90085-8.

Grzanna R., Lindmark L., Frondoza C. G. Ginger—an herbal medicinal product with broad anti-inflammatory actions. Journal of Medicinal Food. 2005;8(2):125–132. doi: 10.1089/jmf.2005.8.125.

Lantz R. C., Chen G. J., Sarihan M., Sólyom A. M., Jolad S. D., Timmermann B. N. The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine. 2007;14(2-3):123–128. doi: 10.1016/j.phymed.2006.03.003.

Masuda Y., Kikuzaki H., Hisamoto M., Nakatani N. Antioxidant properties of gingerol related compounds from ginger. BioFactors. 2004;21(1–4):293–296. doi: 10.1002/biof.552210157.

Jung H. W., Son H. Y., Van Minn C., Kim Y. H., Park Y.-K. Methanol extract of ficus leaf inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated microglia via the MAPK pathway. Phytotherapy Research. 2008;22(8):1064–1069. doi: 10.1002/ptr.2442.

Jung H. W., Yoon C.-H., Park K. M., Han H. S., Park Y.-K. Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway. Food and Chemical Toxicology. 2009;47(6):1190–1197. doi: 10.1016/j.fct.2009.02.012.

Häke I., Schönenberger S., Neuman J., et al. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue. Journal of Neuroimmunology. 2009;206(1-2):91–99.

Davalos D., Grutzendler J., Yang G., et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience. 2005;8(6):752–758. doi: 10.1038/nn1472.

Fetler L., Amigorena S. Brain under surveillance: the microglia patrol. Science. 2005;309(5733):392–393. doi: 10.1126/science.1114852.

Pérez-H J., Carrillo-S C., García E., Ruiz-Mar G., Pérez-Tamayo R., Chavarría A. Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson's disease. Toxicology. 2014;319(1):38–43. doi: 10.1016/j.tox.2014.02.009.

Metodiewa D., Kośka C. Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotoxicity Research. 1999;1(3):197–233. doi: 10.1007/bf03033290.

Adamson G. E., Lazarus S. A., Mitchell A. E., et al. HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. Journal of Agricultural and Food Chemistry. 1999;47(10):4184–4188. doi: 10.1021/jf990317m.

Bisson J.-F., Nejdi A., Rozan P., Hidalgo S., Lalonde R., Messaoudi M. Effects of long-term administration of a cocoa polyphenolic extract (Acticoa powder) on cognitive performances in aged rats. British Journal of Nutrition. 2008;100(1):94–101. doi: 10.1017/s0007114507886375.

Sangeetha N., Aranganathan S., Nalini N. Silibinin ameliorates oxidative stress induced aberrant crypt foci and lipid peroxidation in 1, 2 dimethylhydrazine induced rat colon cancer. Investigational New Drugs. 2010;28(3):225–233. doi: 10.1007/s10637-009-9237-5

Awuchi, C. G., Amagwula, I. O., Priya, P., Kumar, R., Yezdani, U., & Khan, M. G. (2020). Aflatoxins in foods and feeds: A review on health implications, detection, and control. Bull. Environ. Pharmacol. Life Sci, 9, 149-155.

Umama, Y., Venkatajah, G., Shourabh, R., Kumar, R., Verma, A., Kumar, A., & Gayoor, M. K. (2019). Topic-The scenario of pharmaceuticals and development of microwave as; sisted extraction technique. World J Pharm Pharm Sci, 8(7), 1260-1271.

Roshan, K. (2020). Priya damwani, Shivam kumar, Adarsh suman, Suthar Usha. An overview on health benefits and risk factor associated with coffee. International Journal Research and Analytical Review, 7(2), 237-249.

Sahana, S. (2020). Purabi saha, Roshan kumar, Pradipta das, Indranil Chatterjee, Prasit Roy, Sk Abdur Rahamat. A Review of the 2019 Corona virus (COVID-19) World Journal of Pharmacy and Pharmaceutical science, 9(9), 2367-2381.

Nyarko, R. O., Kumar, R., Sharma, S., Chourasia, A., Roy, A., & Saha, P. (2022). ANTIBACTERIAL ACTIVITY OF HERBAL PLANT-TINOSPORA CORDIFOLIA AND CATHARNTHUS ROSEUS.

Kumar, R., Saha, P., Lokare, P., Datta, K., Selvakumar, P., & Chourasia, A. (2022). A Systemic Review of Ocimum sanctum (Tulsi): Morphological Characteristics, Phytoconstituents and Therapeutic Applications. International Journal for Research in Applied Sciences and Biotechnology, 9(2), 221-226.

Singh, M. K., Kumar, A., Kumar, R., Kumar, P. S., Selvakumar, P., & Chourasia, A. (2022). Effects of Repeated Deep Frying on Refractive Index and Peroxide Value of Selected Vegetable Oils. International Journal for Research in Applied Sciences and Biotechnology, 9(3), 28-31.

Bind, A., Das, S., Singh, V. D., Kumar, R., Chourasia, A., & Saha, P. NATURAL BIOACTIVES FOR THE POTENTIAL MANAGEMENT OF GASTRIC ULCERATION. Turkish Journal of Physiotherapy and Rehabilitation, 32, 3.

Dubey, A., Yadav, P., Verma, P., & Kumar, R. (2022). Investigation of Proapoptotic Potential of Ipomoea carnea Leaf Extract on Breast Cancer Cell Line. Journal of Drug Delivery and Therapeutics, 12(1), 51-55.

Saha, P., Kumar, R., Nyarko, R. O., Kahwa, I., & Owusu, P. (2021). HERBAL SECONDARY METABOLITE FOR GASTRO-PROTECTIVE ULCER ACTIVITY WITH API STRUCTURES.

Sahana, S. (2020). Roshan kumar, Sourav nag, Reshmi paul, Nilayan guha, Indranil Chatterjee. A Review on Alzheimer disease and future prospects. World Journal of Pharmacy and Pharmaceutical science, 9(9), 1276-1285.

Sahana, S., Kumar, R., Nag, S., Paul, R., Chatterjee, I., & Guha, N. (2020). A REVIEW ON ALZHEIMER DISEASE AND FUTURE PROSPECTS.

Sahana, S. (2020). Roshan kumar, Sourav nag, Reshmi paul, Nilayan guha, Indranil Chatterjee. A Review on Alzheimer disease and future prospects. World Journal of Pharmacy and Pharmaceutical science, 9(9), 1276-1285.

Kumar, R., Saha, P., Kumar, Y., Sahana, S., Dubey, A., & Prakash, O. (2020). A REVIEW ON DIABETES MELLITUS: TYPE1 & TYPE2.

KUMAR, R., SAHA, P., SARKAR, S., RAWAT, N., & PRAKASH, A. (2021). A REVIEW ON NOVEL DRUG DELIVERY SYSTEM. IJRAR-International Journal of Research and Analytical Reviews (IJRAR), 8(1), 183-199.

Singh, M. K., Kumar, A., Kumar, R., Kumar, P. S., Selvakumar, P., & Chourasia, A. (2022). Effects of Repeated Deep Frying on Refractive Index and Peroxide Value of Selected Vegetable Oils. International Journal for Research in Applied Sciences and Biotechnology, 9(3), 28-31.

PURABISAHA, R. K., RAWAT, S. S. N., & PRAKASH, A. (2021). A REVIEW ON NOVEL DRUG DELIVERY SYSTEM.

Raj, A., Tyagi, S., Kumar, R., Dubey, A., & Hourasia, A. C. (2021). Effect of isoproterenol and thyroxine in herbal drug used as cardiac hypertrophy. Journal of Cardiovascular Disease Research, 204-217.

Nyarko, R. O., Saha, P., Kumar, R., Kahwa, I., Boateng, E. A., Boateng, P. O., ... & Bertram, A. (2021). Role of Cytokines and Vaccines in Break through COVID 19 Infections. Journal of Pharmaceutical Research International, 33, 2544-2549.

Nyarko, R. O., Prakash, A., Kumar, N., Saha, P., & Kumar, R. (2021). Tuberculosis a globalized disease. Asian Journal of Pharmaceutical Research and Development, 9(1), 198-201.

Galhardi F., Mesquita K., Monserrat J. M., Barros D. M. Effect of silymarin on biochemical parameters of oxidative stress in aged and young rat brain. Food and Chemical Toxicology. 2009;47(10):2655–2660. doi: 10.1016/j.fct.2009.07.030.

Miyamoto M., Murphy T. H., Schnaar R. L., Coyle J. T. Antioxidants protect against glutamate-induced cytotoxicity in a neuronal cell line. Journal of Pharmacology and Experimental Therapeutics. 1989;250(3):1132–1140.

Downloads

Published

2022-06-30

How to Cite

Singh, Y., Paswan, S. K., Kumar, R., Otia, M. K., Acharya, S., Kumar, D., & E., K. (2022). Plant & Its Derivative Shows Therapeutic Activity on Neuroprotective Effect. Journal for Research in Applied Sciences and Biotechnology, 1(2), 10–24. https://doi.org/10.55544/jrasb.1.2.2

Issue

Section

Articles