Review of Virulence Factors in Candida

Authors

  • Mohammed Sami Farhan Department of Biology, College of Sciences, Tikrit University, IRAQ.
  • Bilal Ahmed Abdullah Department of Biology, College of Sciences, Tikrit University, IRAQ.
  • Ali Esam Mamdwooh Department of Biology, College of Sciences, Tikrit University, IRAQ.
  • Rand Salwan Numan Department of Biology, College of Sciences, Tikrit University, IRAQ.

DOI:

https://doi.org/10.55544/jrasb.3.2.15

Keywords:

Candida, Virulence factor, Fungal, biofilm, cell adhere

Abstract

Candida albicans is a prevalent commensal fungus that inhabits various anatomical regions, including the oropharyngeal cavity, gastrointestinal and vaginal tract, as well as the skin of persons in good condition. C. albicans is present in the normal flora of the microbiota in around 50% of the population. The clinical presentations of Candida species encompass a spectrum of symptoms, spanning from localized. The spectrum of mucocutaneous issues ranges from superficial to invasive disorders that impact many organ systems and present a substantial threat to human life. Disruptions in the normal homeostasis of Candida can be attributed to a range of reasons, encompassing systemic and local factors as well as genetic and environmental influences.

These disruptions ultimately lead to a shift from a state of normal flora to the development of Infections caused by pathogens and opportunistic agents. The initiation and advancement of infection are regulated by the virulence characteristics of Candida, which play a role in the emergence of candidiasis. Oral candidiasis presents with a wide range of symptoms, which can be classified into major and minor types. The gastrointestinal tract is the main reservoir for Candida albicans in the human body. Infection occurs due to an imbalance in the local microbiota, impaired immune function, and damage to the intestinal mucosal barrier. Candidaemia, a term used to describe invasive infections caused by candida, is associated with the presence of Candida albicans in the bloodstream. The mutual relationship remains intact by maintaining a balance between the host immune system and C. albicans virulence factors. This study investigates the virulence traits exhibited by Candida albicans. These components have a significant impact on the development of disorders.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Singh, D.K.; Tóth, R.; Gácser, A. Mechanisms of Pathogenic Candida Species to Evade the Host Complement Attack. Front. Cell. Infect. Microbiol. 2020, 10, 94.

Rodrigues, C.F.; Rodrigues, M.E.; Henriques, M. Candida sp. Infections in patients with diabetes mellitus. J. Clin. Med. 2019, 8, 76.

Singh, S.; Fatima, Z.; Hameed, S. Predisposing factors endorsing Candida infections. Infez. Med. 2015, 23, 211–223.

Sara N. Abdulla1; Batol. Dheeb; Safaa AL-Deen A. S. AL-Qaysi; Mohammed S. Farhan, Muhannad Massadeh and Abbas Fadhel Hamid. Isolation and Diagnosis of Biofilms of Klebsiella pneumoniae Bacteria and Candida albicans Yeast, and Studying the Sensitivity of The Pathogens to Antibiotics and Antifungals .(2023). Egypt. Acad. J. Biolog. Sci., 15(2):73-88(2023)

McCarty, T.P.; White, C.M.; Pappas, P.G. Candidemia and Invasive Candidiasis. Infect. Dis. Clin. N. Am. 2021, 35, 389–413.

Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clin. Microbiol. Infect. 2014, 20 (Suppl. S6), 5–10.

Koehler, P.; Stecher, M.; Cornely, O.A.; Koehler, D.; Vehreschild, M.; Bohlius, J.; Wisplinghoff, H.; Vehreschild, J.J. Morbidity and mortality of candidaemia in Europe: An epidemiologic meta-analysis. Clin. Microbiol. Infect. 2019, 25, 1200–1212.

Nemeth, T.; Toth, A.; Szenzenstein, J.; Horvath, P.; Nosanchuk, J.D.; Grozer, Z.; Toth, R.; Papp, C.; Hamari, Z.; Vagvolgyi, C.; et al. Characterization of virulence properties in the C. parapsilosis sensu lato species. PLoS ONE 2013, 8, e68704.

Cavalheiro, M.; Teixeira, M.C. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front. Med. 2018, 5, 28.

Silva-Dias, A.; Miranda, I.M.; Branco, J.; Monteiro-Soares, M.; Pina-Vaz, C.; Rodrigues, A.G. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: Relationship among Candida spp. Front. Microbiol. 2015, 6, 205.

Méthot, P.-O.; Alizon, S. What is a pathogen? Toward a process view of host-parasite interactions. Virulence 2014, 5, 775–785.

Lionakis, M.S.; Netea, M.G. Candida and host determinants of susceptibility to invasive candidiasis. PLoS Pathog. 2013, 9.

Höfs, S.; Mogavero, S.; Hube, B. Interaction of Candida albicans with host cells: Virulence factors, host defense, escape strategies, and the microbiota. J. Microbiol. 2016, 54, 149–169.

Moyes, D.L.; Richardson, J.P.; Naglik, J.R. Candida albicans-epithelial interactions and pathogenicity mechanisms: Scratching the surface. Virulence 2015, 6, 338–346.

Dalle, F.; Wächtler, B.; L’Ollivier, C.; Holland, G.; Bannert, N.; Wilson, D.; Labruère, C.; Bonnin, A.; Hube, B. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell. Microbiol. 2010, 12, 248–271.

Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128.

Li, F.; Svarovsky, M.J.; Karlsson, A.J.; Wagner, J.P.; Marchillo, K.; Oshel, P.; Andes, D.; Palecek, S.P. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot. Cell 2007, 6, 931–939.

Hashash, R.; Younes, S.; Bahnan, W.; Koussa, J.E.; Maalouf, K.; Dimassi, H.I.; Khalaf, R.A. Characterisation of Pga1, a putative Candida albicans cell wall protein necessary for proper adhesion and biofilm formation. Mycoses 2011, 54, 491–500.

Butler, G.; Rasmussen, M.D.; Lin, M.F.; Santos, M.A.S.; Sakthikumar, S.; Munro, C.A.; Rheinbay, E.; Grabherr, M.; Forche, A.; Reedy, J.L.; et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 2009, 459, 657–662.

Hoyer, L.L.; Cota, E. Candida albicans agglutinin-like sequence (Als) family vignettes: A review of als protein structure and Function. Front. Microbiol. 2016, 7.

Phan, Q.T.; Myers, C.L.; Fu, Y.; Sheppard, D.C.; Yeaman, M.R.; Welch, W.H.; Ibrahim, A.S.; Edwards, J.E., Jr.; Filler, S.G. Als3 Is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007, 5, e64.

Domergue, R.; Castaño, I.; Peñas, A.D.L.; Zupancic, M.; Lockatell, V.; Hebel, J.R.; Johnson, D.; Cormack, B.P. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 2005, 308, 866–870.

Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 2011, 19, 241–247.

Jackson, A.P.; Gamble, J.A.; Yeomans, T.; Moran, G.P.; Saunders, D.; Harris, D.; Aslett, M.; Barrell, J.F.; Butler, G.; Citiulo, F.; et al. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res. 2009, 19, 2231–2244.

Gácser, A.; Schäfer, W.; Nosanchuk, J.S.; Salomon, S.; Nosanchuk, J.D. Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models. Fungal Genet. Biol. 2007, 44, 1336–1341.

Sikora, M. Czynniki wirulencji grzybów z rodzaju candida istotne w patogenezie zakażeń występujących u pacjentów żywionych pozajelitowo. Postep. Mikrobiol. 2015, 3, 224–234.

Staniszewska, M.; Bondaryk, M.; Kowalska, M.; Magda, U.; Łuka, M.; Ochal, Z.; Kurzątkowski, W. Pathogenesis and treatment of fungal infections by Candida spp. [Patogeneza i leczenie zakażeń Candida spp.]. Postep. Mikrobiol. 2014, 53, 229–240.

Nobile, C.J.; Johnson, A.D. Candida albicans Biofilms and Human Disease. Annu. Rev. Microbiol. 2015, 69, 71–92.

Calderone, R.A.; Fonzi, W. A Virulence factors in Candida albicans. TRENDS Microbiol. 2001, 9, 327–335.

Moran, G.; Coleman, D.; Sullivan, D. An Introduction to the Medically Important Candida Species. In Candida and Candidiasis, 2nd ed.; Calderone, R.A., Clancy, C.J., Eds.; American Society of Microbiology: Washington, DC, USA, 2012; pp. 11–25.

Tang, Y.; Yu, F.; Huang, L.; Hu, Z. The changes of antifungal susceptibilities caused by the phenotypic switching of Candida species in 229 patients with vulvovaginal candidiasis. J. Clin. Lab. Anal. 2019, 33, e22644.

Lastauskienė, E.; Čeputytė, J.; Girkontaitė, I.; Zinkevičienė, A. Phenotypic Switching of Candida guilliermondii is Associated with Pseudohyphae Formation and Antifungal Resistance. Mycopathologia 2015, 179, 205–211.

Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 2011, 19, 241–247.

Sudbery, P.E. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 2011, 9, 737–748.

Lastauskienė, E.; Čeputytė, J.; Girkontaitė, I.; Zinkevičienė, A. Phenotypic Switching of Candida guilliermondii is Associated with Pseudohyphae Formation and Antifungal Resistance. Mycopathologia 2015, 179, 205–211.

Cassone, A. Vulvovaginal Candida albicans infections: Pathogenesis, immunity and vaccine prospects. BJOG Int. J. Obstet. Gynaecol. 2015, 122, 785–794.]

Moran, G.; Coleman, D.; Sullivan, D. An Introduction to the Medically Important Candida Species. In Candida and Candidiasis, 2nd ed.; Calderone, R.A., Clancy, C.J., Eds.; American Society of Microbiology: Washington, DC, USA, 2012; pp. 11–25.

Consolaro, M.E.L.; Albertoni, T.A.; Svidzinski, A.E.; Peralta, R.M.; Svidzinski, T.I.E. Vulvovaginal candidiasis is associated with the production of germ tubes by Candida albicans. Mycopathologia 2005, 159, 501–507.

Tang, Y.; Yu, F.; Huang, L.; Hu, Z. The changes of antifungal susceptibilities caused by the phenotypic switching of Candida species in 229 patients with vulvovaginal candidiasis. J. Clin. Lab. Anal. 2019, 33, e22644.

Sudbery, P.; Gow, N.; Berman, J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004, 12, 317–324.

Poulain D. Jouault T (2004) . Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk. Curr Opin Microbiol7: 342–349.

Park MDE , Jung WH . Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology 41(2), 67–72 (2013).

Park M , Do E , Jung WH . Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology 41(2), 67–72 (2013).

Ibrahim AS , Mirbod F , Filler SG et al. Evidence implicating phospholipase as a virulence factor of Candida albicans . Infect. Immun. 63(5), 1993–1998 (1995).

Ghannoum MA . Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. 13(1), 122–143 (2000).

Mattei AS , Alves SH , Severo CB , Guazzelli Lda S , Oliveira Fde M , Severo LC . Determination of germ tube, phospholipase, and proteinase production by bloodstream isolates of Candida albicans . Rev. Soc. Bras. Med. Trop. 46(3), 340–342 (2013).

Naglik JR , Challacombe SJ , Hube B . Candida albicans secreted aspartyl proteinases in virulence and pathogenesis . Microbiol. Mol. Biol. Rev. 67(3), 400–428 (2003).

Buu LM , Chen YC . Sap6, a secreted aspartyl proteinase, participates in maintenance the cell surface integrity of Candida albicans . J. Biomed. Sci. 20(1), 101 (2013)

Chandra, J.; Mukherjee, P. Candida biofilms: Development, architecture, and resistance. Microbiol. Spectr. 2015, 3, 115–134.

Seneviratne, C.J.; Jin, L.; Samaranayake, L.P. Biofilm lifestyle of Candida: A mini review. Oral Dis. 2008, 14, 582–590.

Las Penčz de, A.; Pan, S.J.; CastaĖo, I.; Alder, J.; Cregg, R.; Cormack, B.P. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP-1 and SIRdependent transcriptional silencing. Genes Dev. 2003, 17, 2245–2258.

Wang, D.; An, N.; Yang, Y.; Yang, X.; Fan, Y.; Feng, J. Candida tropicalis distribution and drug resistance is correlated with ERG11 and UPC2 expression. Antimicrob. Resist. Infect. Control 2021, 10,.

Sadeghi, G.; Ebrahimi-Rad, M.; Mousavi, S.F.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Emergence of non-Candida albicans species: Epidemiology, phylogeny and fluconazole susceptibility profile. J. Mycol. Med. 2018, 28, 51–58.

Yamin, D.H.; Husin, A.; Harun, A. Risk factors of Candida parapsilosis catheter-related bloodstream infection. Front. Public Health 2021, 9, 631865.

Harrington, R.; Kindermann, S.L.; Hou, Q.; Taylor, R.J.; Azie, N.; Horn, D.L. Candidemia and invasive candidiasis among hospitalized neonates and pediatric patients. Curr. Med. Res. Opin. 2017, 33, 1803–1812.

Dranginis, A.M.; Rauceo, J.M.; Coronado, J.E.; Lipke, P.N. A biochemical guide to yeast adhesins: Glycoproteins for social and antisocial occasions. Microb. Mol. Biol. Rev. 2007, 71, 282–294.

Weig, M.; Jänsch, L.; Gross, U.; De Koster, C.G.; Klis, F.M.; De Groot, P.W. Systematic identification in silico of covalently bound cell wall proteins and analysis of proteinpolysaccharide linkages of the human pathoge Candida glabrata. Microbiology 2004, 150, 3129–3144.

Bing, J.; Guan, Z.; Zheng, T.; Zhang, Z.; Fan, S.; Ennis, C.L.; Nobile, C.J.; Huang, G. Clinical isolates of Candida auris with enhanced adherence and biofilm formation due to genomic amplification of ALS4. PLoS Pathog. 2023, 19, e1011239.

de Groot, P.W.J.; Bader, O.; de Boer, A.D.; Weig, M.; Chauhan, N. Adhesins in human fungal pathogens: Glue with plenty of stick. Eukaryot. Cell 2013, 12, 470–481.

Hoyer, L.L. The ALS gene family of Candida albicans. Trends Microbiol. 2001, 9, 176–180.

Modrezewka, B.; Kurnatowski, P. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann. Parasitol. 2015, 61, 3–9.

Panagoda, G.J.; Ellepola, A.N.; Samaranayake, L.P. Adhesion of Candida parapsilosis to epithelial and acrylic surfaces correlates with cell surface hydrophobicity. Mycoses 2001, 44, 29–35.

Gómez-Gaviria, M.; Mora-Montes, H.M. Current aspects in the biology, pathogeny, and treatment of Candida krusei, a neglected fungal pathogen. Infect. Drug Resist. 2020, 13, 1673–1689.

Berila, N.; Subík, J. Oportúnne patogénna kvasinka Candida glabrata a jej mechanizmy rezistencie voci antimykotikám (súborný referát) [Opportunistic pathogen Candida glabrata and the mechanisms of its resistance to antifungal drugs]. Epidemiol. Mikrobiol. Imunol. 2010, 59, 67–79.

Atiencia-Carrera, M.B.; Cabezas-Mera, F.S.; Tejera, E.; Machado, A. Prevalence of biofilms in Candida spp. bloodstream infections: A meta-analysis. PLoS ONE 2022, 17, e0263522.

Al-Fattani, M.A.; Douglas, L.J. Biofilm matrix of Candida albicans and Candida tropicalis: Chemical composition and role in drug resistance. J. Med. Microbiol. 2006, 55, 999–1008.

Blankenship, J.R.; Mitchell, A.P. How to build a biofilm: A fungal perspective. Curr. Opin. Microbiol. 2006, 9, 588–594.

Řičicová, M.; Kucharíková, S.; Tournu, H.; Hendrix, J.; Bujdáková, H.; Van Eldere, J.; Lagrou, K.; Van Dijck, P. Candida albicans biofilm formation in a new in vivo rat model. Microbiology 2010, 156, 909–919.

Andes, D.; Nett, J.; Oschel, P.; Albrecht, R.; Marchillo, K.; Pitula, A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect. Immun. 2004, 72, 6023–6031.

Kucharikova, S.; Neirinck, B.; Sharma, N.; Vleugels, J.; Lagrou, K.; Van Dijck, P. In vivo Candida glabrata biofilm development on foreign bodies in a rat subcutaneous model. J. Antimicrob. Chemother. 2014, 70, 846–856.

Tseng, Y.K.; Chen, Y.C.; Hou, C.J.; Deng, F.S.; Liang, S.H.; Hoo, S.Y.; Hsu, C.C.; Ke, C.L.; Lin, C.H. Evaluation of biofilm formation in Candida tropicalis using a silicone-based platform with synthetic urine medium. Microorganisms 2020, 8, 660.

Harrison, J.; Ceri, H.; Yerly, J.; Rabiei, M.; Hu, Y.; Martinuzzi, R.; Turner, R.J. Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Appl. Environ. Microbiol. 2007, 73, 4940–4949.

Mitchell, K.F.; Zarnowski, R.; Andes, D.R. The extracellular matrix of fungal biofilms. Adv. Exp. Med. Biol. 2016, 931, 21–35.

Batol Imran Dheeb, Sara Najim Abdulla, Safaa AL-Deen Ahmed Shanter ALQaysi , Basma M.Al-Sarraj ,Mohammed Sami Farhan. Extraction of Klebsiella pneumoniae and Candida albicans Biofilm and Studying their Cytotoxic Effects on Human Lymphocytes (2023). Jordan Journal of Biological Sciences Volume 16, Number 4,

Downloads

Published

2024-04-13

How to Cite

Farhan, M. S., Abdullah, B. A., Mamdwooh, A. E., & Numan, R. S. (2024). Review of Virulence Factors in Candida. Journal for Research in Applied Sciences and Biotechnology, 3(2), 75–82. https://doi.org/10.55544/jrasb.3.2.15

Issue

Section

Articles