Uses of AI in Field of Radiology- What is State of Doctor & Patients Communication in Different Disease for Diagnosis Purpose

Authors

  • Roshan Kumar Assistant Professor, Department of Pharmacy, Shree Dev Bhoomi Institute of Education Science and Technology (SDBIT), Dehradun, INDIA.
  • Anamika Assistant Professor, Department of Pharmacy, Shree Dev Bhoomi Institute of Education Science and Technology (SDBIT), Dehradun, INDIA.
  • Ravindra Kumar Nirala Research Scholar, Department of Paramedical (BMRIT), Shree Dev Bhoomi Institute of Education Science and Technology (SDBIT), Dehradun, INDIA.
  • Rajkumar Pradip Ade Shri Bhairavnath Nisarg Mandal’s Diploma in Pharmacy Institute, Hingoli, Maharashtra, INDIA.
  • Amle Vandana Sonaji Shri Bhairavnath Nisarg Mandal’s Diploma in Pharmacy Institute, Hingoli, Maharashtra, INDIA.

DOI:

https://doi.org/10.55544/jrasb.2.5.9

Keywords:

AI, Radiology, Doctors-patients Communication, Disease diagnosis

Abstract

Over the course of the past ten years, there has been a rising interest in the application of AI in radiology with the goal of improving diagnostic practises. Every stage of the imaging workflow might potentially be improved by AI, beginning with the ordering of diagnostic procedures and ending with the distribution of data. One of the disadvantages of utilising AI in radiology is that it can disrupt the doctor-patient contact that takes place during the diagnostic procedure. This research synthesis examines how patients and clinicians engage with AI in the process of diagnosing cancer, brain disorders, gastrointestinal tract, and bone-related diseases. [S]ome of the diseases that are studied include cancer, brain disorders, and gastrointestinal tract.  Researchers began their investigation of several databases in 2021 and continued their work until 2023. Some of the databases that were examined include PubMed, Embase, Medline, Scopus, and PsycNet. The search terms "artificial intelligence" and "intelligence machine" as well as "communication," "radiology," and "oncology diagnosis" were utilised. It has been demonstrated that artificial intelligence can help medical professionals make more accurate diagnoses. Medical compliance can be enhanced with good training in doctor-patient diagnosis communication, and future research may assist boost patients' trust by informing them of the benefits of AI. Both of these things are important for the delivery of quality medical care.

GRAPHICAL ABSTRACT

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., ... & Socher, R. (2021). Deep learning-enabled medical computer vision. NPJ digital medicine, 4(1), 5.

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 25(1), 44-56.

Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California management review, 61(4), 5-14.

Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC medicine, 17, 1-9.

Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V., & Madabhushi, A. (2019). Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology. Nature reviews Clinical oncology, 16(11), 703-715.

Yu, K. H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature biomedical engineering, 2(10), 719-731.

Tschandl, P., Rinner, C., Apalla, Z., Argenziano, G., Codella, N., Halpern, A., ... & Kittler, H. (2020). Human–computer collaboration for skin cancer recognition. Nature Medicine, 26(8), 1229-1234.

Echle, A., Rindtorff, N. T., Brinker, T. J., Luedde, T., Pearson, A. T., & Kather, J. N. (2021). Deep learning in cancer pathology: a new generation of clinical biomarkers. British journal of cancer, 124(4), 686-696.

Longoni, C., Bonezzi, A., & Morewedge, C. K. (2019). Resistance to medical artificial intelligence. Journal of Consumer Research, 46(4), 629-650.

Liu, Y., Jain, A., Eng, C., Way, D. H., Lee, K., Bui, P., ... & Coz, D. (2020). A deep learning system for differential diagnosis of skin diseases. Nature medicine, 26(6), 900-908.

Kleppe, A., Skrede, O. J., De Raedt, S., Liestøl, K., Kerr, D. J., & Danielsen, H. E. (2021). Designing deep learning studies in cancer diagnostics. Nature Reviews Cancer, 21(3), 199-211.

Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., & Wen, Z. (2022). FAT-Net: Feature adaptive transformers for automated skin lesion segmentation. Medical image analysis, 76, 102327.

Munir, K., Elahi, H., Ayub, A., Frezza, F., & Rizzi, A. (2019). Cancer diagnosis using deep learning: a bibliographic review. Cancers, 11(9), 1235.

Tschandl, P., Codella, N., Akay, B. N., Argenziano, G., Braun, R. P., Cabo, H., ... & Kittler, H. (2019). Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The lancet oncology, 20(7), 938-947.

Nagpal, K., Foote, D., Liu, Y., Chen, P. H. C., Wulczyn, E., Tan, F., ... & Stumpe, M. C. (2019). Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ digital medicine, 2(1), 48.

Brinker, T. J., Hekler, A., Utikal, J. S., Grabe, N., Schadendorf, D., Klode, J., ... & Von Kalle, C. (2018). Skin cancer classification using convolutional neural networks: systematic review. Journal of medical Internet research, 20(10), e11936.

Dildar, M., Akram, S., Irfan, M., Khan, H. U., Ramzan, M., Mahmood, A. R., ... & Mahnashi, M. H. (2021). Skin cancer detection: a review using deep learning techniques. International journal of environmental research and public health, 18(10), 5479.

Brinker, T. J., Hekler, A., Enk, A. H., Berking, C., Haferkamp, S., Hauschild, A., ... & Utikal, J. S. (2019). Deep neural networks are superior to dermatologists in melanoma image classification. European Journal of Cancer, 119, 11-17.

Mahbod, A., Schaefer, G., Wang, C., Dorffner, G., Ecker, R., & Ellinger, I. (2020). Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification. Computer methods and programs in biomedicine, 193, 105475.

Hekler, A., Utikal, J. S., Enk, A. H., Hauschild, A., Weichenthal, M., Maron, R. C., ... & Thiem, A. (2019). Superior skin cancer classification by the combination of human and artificial intelligence. European Journal of Cancer, 120, 114-121.

Yin, J., Ngiam, K. Y., & Teo, H. H. (2021). Role of artificial intelligence applications in real-life clinical practice: systematic review. Journal of medical Internet research, 23(4), e25759.

Wang, L., Zhang, Y., Wang, D., Tong, X., Liu, T., Zhang, S., ... & Clarke, M. (2021). Artificial intelligence for COVID-19: a systematic review. Frontiers in medicine, 8, 1457.

Rasmy, L., Xiang, Y., Xie, Z., Tao, C., & Zhi, D. (2021). Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction. NPJ digital medicine, 4(1), 86.

Arslan, A., Cooper, C., Khan, Z., Golgeci, I., & Ali, I. (2022). Artificial intelligence and human workers interaction at team level: a conceptual assessment of the challenges and potential HRM strategies. International Journal of Manpower, 43(1), 75-88.

Codlin, A. J., Dao, T. P., Vo, L. N. Q., Forse, R. J., Van Truong, V., Dang, H. M., ... & Caws, M. (2021). Independent evaluation of 12 artificial intelligence solutions for the detection of tuberculosis. Scientific reports, 11(1), 23895.

Wolff, J., Pauling, J., Keck, A., & Baumbach, J. (2020). The economic impact of artificial intelligence in health care: systematic review. Journal of medical Internet research, 22(2), e16866.

Powell, J. (2019). Trust Me, I’ma chatbot: how artificial intelligence in health care fails the turing test. Journal of medical Internet research, 21(10), e16222.

Huang, J., Galal, G., Etemadi, M., & Vaidyanathan, M. (2022). Evaluation and mitigation of racial bias in clinical machine learning models: scoping review. JMIR Medical Informatics, 10(5), e36388.

Al-Dury, N., Ravn-Fischer, A., Hollenberg, J., Israelsson, J., Nordberg, P., Strömsöe, A., ... & Rawshani, A. (2020). Identifying the relative importance of predictors of survival in out of hospital cardiac arrest: a machine learning study. Scandinavian journal of trauma, resuscitation and emergency medicine, 28, 1-8.

Suppakitjanusant, P., Sungkanuparph, S., Wongsinin, T., Virapongsiri, S., Kasemkosin, N., Chailurkit, L., & Ongphiphadhanakul, B. (2021). Identifying individuals with recent COVID-19 through voice classification using deep learning. Scientific Reports, 11(1), 19149.

Zhang, J., Budhdeo, S., William, W., Cerrato, P., Shuaib, H., Sood, H., ... & Teo, J. T. (2022). Moving towards vertically integrated artificial intelligence development. NPJ digital medicine, 5(1), 143.

Yuan, D., Liu, Y., Xu, Z., Zhan, Y., Chen, J., & Lukasiewicz, T. (2023). Painless and accurate medical image analysis using deep reinforcement learning with task-oriented homogenized automatic pre-processing. Computers in Biology and Medicine, 153, 106487.

Shen, J., Chen, J., Zheng, Z., Zheng, J., Liu, Z., Song, J., ... & Ming, W. K. (2020). An innovative artificial intelligence–based app for the diagnosis of gestational diabetes mellitus (GDM-AI): Development study. Journal of Medical Internet Research, 22(9), e21573.

Zheng, Z., Zheng, J., Liu, Z., Song, J., ... & Ming, W. K. (2020). An innovative artificial intelligence–based app for the diagnosis of gestational diabetes mellitus (GDM-AI): Development study. Journal of Medical Internet Research, 22(9), e214783.

Lazzarini, N., Filippoupolitis, A., Manzione, P., & Eleftherohorinou, H. (2022). A machine learning model on Real World Data for predicting progression to Acute Respiratory Distress Syndrome (ARDS) among COVID-19 patients. PLoS One, 17(7), e0271227.

Hashmani, M. A., Jameel, S. M., Rizvi, S. S. H., & Shukla, S. (2021). An adaptive federated machine learning-based intelligent system for skin disease detection: A step toward an intelligent dermoscopy device. Applied Sciences, 11(5), 2145.

Shaheen, M. Y. (2021). Adoption of machine learning for medical diagnosis. ScienceOpen preprints.

Nahmias, D. O., Civillico, E. F., & Kontson, K. L. (2020). Deep learning and feature based medication classifications from EEG in a large clinical data set. Scientific Reports, 10(1), 14206.

Liu, C., Jiao, D., & Liu, Z. (2020). Artificial intelligence (AI)-aided disease prediction. Bio Integration, 1(3), 130-136.

Iqbal, U., Celi, L. A., & Li, Y. C. J. (2020). How can artificial intelligence make medicine more preemptive?. Journal of Medical Internet Research, 22(8), e17211.

Herington, J., McCradden, M. D., Creel, K., Boellaard, R., Jones, E. C., Jha, A. K., ... & Saboury, B. (2023). Ethical considerations for artificial intelligence in medical imaging: data collection, development, and evaluation. Journal of Nuclear Medicine.

Kriza, C., Amenta, V., Zenié, A., Panidis, D., Chassaigne, H., Urbán, P., ... & Griesinger, C. B. (2021). Artificial intelligence for imaging-based COVID-19 detection: Systematic review comparing added value of AI versus human readers. European Journal of Radiology, 145, 110028.

Zhou, J., Zeng, Z. Y., & Li, L. (2020). Progress of artificial intelligence in gynecological malignant tumors. Cancer Management and Research, 12823-12840.

Lennox-Chhugani, N., Chen, Y., Pearson, V., Trzcinski, B., & James, J. (2021). Women’s attitudes to the use of AI image readers: a case study from a national breast screening programme. BMJ Health & Care Informatics, 28(1).

Lennox-Chhugani, N., Chen, Y., Pearson, V., Trzcinski, B., & James, J. (2021). Women’s attitudes to the use of AI image readers: a case study from a national breast screening programme. BMJ Health & Care Informatics, 28(1).

Dallora, A. L., Berglund, J. S., Brogren, M., Kvist, O., Ruiz, S. D., Dübbel, A., & Anderberg, P. (2019). Age assessment of youth and young adults using magnetic resonance imaging of the knee: a deep learning approach. JMIR medical informatics, 7(4), e16291.

Campbell, J. P., Mathenge, C., Cherwek, H., Balaskas, K., Pasquale, L. R., Keane, P. A., & Chiang, M. F. (2021). Artificial intelligence to reduce ocular health disparities: moving from concept to implementation. Translational vision science & technology, 10(3), 19-19.

Li, J., Zhou, L., Zhan, Y., Xu, H., Zhang, C., Shan, F., & Liu, L. (2022). How does the artificial intelligence-based image-assisted technique help physicians in diagnosis of pulmonary adenocarcinoma? A randomized controlled experiment of multicenter physicians in China. Journal of the American Medical Informatics Association, 29(12), 2041-2049.

Herington, J., McCradden, M. D., Creel, K., Boellaard, R., Jones, E. C., Jha, A. K., ... & Saboury, B. (2023). Ethical considerations for artificial intelligence in medical imaging: deployment and governance. Journal of Nuclear Medicine, 64(10), 1509-1515.

Raimondo, D., Raffone, A., Aru, A. C., Giorgi, M., Giaquinto, I., Spagnolo, E., ... & Casadio, P. (2023). Application of deep learning model in the sonographic diagnosis of uterine adenomyosis. International Journal of Environmental Research and Public Health, 20(3), 1724.

Li, J., Zhou, L., Zhan, Y., Xu, H., Zhang, C., Shan, F., & Liu, L. (2022). How does the artificial intelligence-based image-assisted technique help physicians in diagnosis of pulmonary adenocarcinoma? A randomized controlled experiment of multicenter physicians in China. Journal of the American Medical Informatics Association, 29(12), 2041-2049.

Sukegawa, S., Tanaka, F., Hara, T., Yoshii, K., Yamashita, K., Nakano, K., ... & Furuki, Y. (2022). Deep learning model for analyzing the relationship between mandibular third molar and inferior alveolar nerve in panoramic radiography. Scientific reports, 12(1), 16925.

Fehrenbach, U., Xin, S., Hartenstein, A., Auer, T. A., Dräger, F., Froböse, K., ... & Penzkofer, T. (2021). Automatized Hepatic Tumor Volume Analysis of Neuroendocrine Liver Metastases by Gd-EOB MRI—A Deep-Learning Model to Support Multidisciplinary Cancer Conference Decision-Making. Cancers, 13(11), 2726.

Kawai, K., Uji, A., Murakami, T., Kadomoto, S., Oritani, Y., Dodo, Y., ... & Tsujikawa, A. (2021). IMAGE EVALUATION OF ARTIFICIAL INTELLIGENCE–SUPPORTED OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IMAGING USING OCT-A1 DEVICE IN DIABETIC RETINOPATHY. Retina, 41(8), 1730-1738.

Xu, Q., Xie, W., Liao, B., Hu, C., Qin, L., Yang, Z., ... & Luo, A. (2023). Interpretability of Clinical Decision Support Systems Based on Artificial Intelligence from Technological and Medical Perspective: A Systematic Review. Journal of Healthcare Engineering, 2023.

Morley, J., Morton, C., Karpathakis, K., Taddeo, M., & Floridi, L. (2021). Towards a framework for evaluating the safety, acceptability and efficacy of AI systems for health: an initial synthesis. arXiv preprint arXiv:2104.06910.

Das, N., Happaerts, S., Gyselinck, I., Staes, M., Derom, E., Brusselle, G., ... & Janssens, W. (2023). Collaboration between explainable artificial intelligence and pulmonologists improves the accuracy of pulmonary function test interpretation. European Respiratory Journal, 61(5).

Chaudhry, M. A., Cukurova, M., & Luckin, R. (2022, July). A transparency index framework for AI in education. In International Conference on Artificial Intelligence in Education (pp. 195-198). Cham: Springer International Publishing.

Chen, M., Tan, X., & Padman, R. (2023). A Machine Learning Approach to Support Urgent Stroke Triage Using Administrative Data and Social Determinants of Health at Hospital Presentation: Retrospective Study. Journal of Medical Internet Research, 25, e36477.

Jussupow, E., Spohrer, K., & Heinzl, A. (2022). Radiologists’ usage of diagnostic AI systems: The role of diagnostic self-efficacy for sensemaking from confirmation and disconfirmation. Business & Information Systems Engineering, 64(3), 293-309.

Jussupow, E., Spohrer, K., & Heinzl, A. (2022). Identity threats as a reason for resistance to artificial intelligence: survey study with medical students and professionals. JMIR Formative Research, 6(3), e28750.

Meskó, B. (2019). The real era of the art of medicine begins with artificial intelligence. Journal of medical Internet research, 21(11), e16295.

Salama, A. H., Ragab, D. A., & Abdel-Moneim, N. M. (2023). Urban spaces as a positive catalyst during pandemics: Assessing the community’s well-being by using artificial intelligence techniques. Ain Shams Engineering Journal, 14(5), 102084.

Harris, J. E. (2023). An AI-Enhanced Electronic Health Record Could Boost Primary Care Productivity. JAMA.

Jha, S. K., Marina, N., Wang, J., & Ahmad, Z. (2022). A hybrid machine learning approach of fuzzy-rough-k-nearest neighbor, latent semantic analysis, and ranker search for efficient disease diagnosis. Journal of Intelligent & Fuzzy Systems, 42(3), 2549-2563.

Radiuk, P., & Kutucu, H. (2020). Heuristic architecture search using network morphism for chest X-Ray classification.

Pumplun, L., Peters, F., Gawlitza, J. F., & Buxmann, P. (2023). Bringing Machine Learning Systems into Clinical Practice: A Design Science Approach to Explainable Machine Learning-Based Clinical Decision Support Systems. Journal of the Association for Information Systems, 24(4), 953-979.

Tanut, B., & Riyamongkol, P. (2020). The development of a defect detection model from the high-resolution images of a sugarcane plantation using an unmanned aerial vehicle. Information, 11(3), 136.

Germain, P., Vardazaryan, A., Padoy, N., Labani, A., Roy, C., Schindler, T. H., & El Ghannudi, S. (2021). Deep Learning Supplants Visual Analysis by Experienced Operators for the Diagnosis of Cardiac Amyloidosis by Cine-CMR. Diagnostics, 12(1), 69.

Pinitas, K., Chavlis, S., & Poirazi, P. (2021). Dendritic Self-Organizing Maps for Continual Learning. arXiv preprint arXiv:2110.13611.

Lee, T., Puyol-Antón, E., Ruijsink, B., Shi, M., & King, A. P. (2022, September). A systematic study of race and sex bias in CNN-based cardiac MR segmentation. In International Workshop on Statistical Atlases and Computational Models of the Heart (pp. 233-244). Cham: Springer Nature Switzerland.

Germain, P., Vardazaryan, A., Padoy, N., Labani, A., Roy, C., Schindler, T. H., & El Ghannudi, S. (2021). Deep Learning Supplants Visual Analysis by Experienced Operators for the Diagnosis of Cardiac Amyloidosis by Cine-CMR. Diagnostics, 12(1), 69.

Poirier, A. C., Moreno, R. D. R., Takaindisa, L., Carpenter, J., Mehat, J. W., Haddon, A., ... & La Ragione, R. M. (2023). VIDIIA Hunter diagnostic platform: a low-cost, smartphone connected, artificial intelligence-assisted COVID-19 rapid diagnostics approved for medical use in the UK. Frontiers in Molecular Biosciences, 10.

Downloads

Published

2023-10-25

How to Cite

Kumar, R., Anamika, Nirala, R. K., Ade, R. P., & Sonaji, A. V. (2023). Uses of AI in Field of Radiology- What is State of Doctor & Patients Communication in Different Disease for Diagnosis Purpose. Journal for Research in Applied Sciences and Biotechnology, 2(5), 51–60. https://doi.org/10.55544/jrasb.2.5.9