A Review on the Extraction and Optimization of Phytochemicals from Curcuma xanthorrhiza Roxb
DOI:
https://doi.org/10.55544/jrasb.2.3.34Keywords:
Curcuma xanthorrhiza, Ultrasound-Assisted extraction, Xanthorrhizol, Curcumin, RSMAbstract
The genus Curcuma pertains to the Zingiberaceae family and consists of 70-80 species of perennial rhizomatous herbs. This genus originates in the Indo-Malayan region and it is broadly spread all over the world across tropical and subtropical areas. Curcuma xanthorrhiza belongs to the Zingiberaceae family is a rich source of phenolics and terpenoids with various bioactivities. This study aims to provide more information about botanical features, biological activities, essential oils, phytochemicals, ultrasound-assisted extraction, and optimization of C.xanthorrhiza by response surface methodology and HPLC for further advanced research. Because of its use in the medicinal and food industries, C.xanthorrhiza is an extremely important economic genus. C.xanthorrhiza rhizomes are the source of a yellow dye and have traditionally been utilized as spices and food preservers, as a garnishing agent, and also utilized for the handling of various illnesses because of the chemical substances found in them. Furthermore, Because of the discovery of new bioactive substances with a broad range of bioactivities, including antioxidants, antivirals, antimicrobials and anti-inflammatory activities, interest in their medicinal properties has increased. Lack of information concerning botanical features, biological activities, essential oils, phytochemicals, ultrasound-assisted extraction, and optimization of C.xanthorrhiza by response surface methodology and HPLC is the biggest problem that the researcher encountered. This review recommended that collecting information concerning the C.xanthorrhiza may be providing more opportunities for further advanced studies lead to avoid wasting time and use this information for further research on bioactive compounds which are beneficial in medicinal purposes.
Downloads
Metrics
References
Ab Halim, M. R., Tan, M., Ismail, S., & Mahmud, R. (2012). Standardization and phytochemical studies of Curcuma xanthorrhiza Roxb. Int J Pharm Pharm Sci, 4(3), 606-610.
Ali, A., Lim, X. Y., Chong, C. H., Mah, S. H., & Chua, B. L. (2018). Ultrasound-assisted extraction of natural antioxidants from betel leaves (Piper betle): Extraction kinetics and modeling. Separation Science and Technology, 53(14), 2192-2205.
Alafiatayo Akinola, A., Ahmad, S., & Maziah, M. (2014). Total antioxidant capacity, total phenolic compounds and the effects of solvent concentration on flavonoid content in Curcuma longa and Curcuma xanthorhhiza rhizomes. Med Aromat Plants, 3(156), 2167-0412.1000156.
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42.
Anggarani, M., & Maulana, D. (2018). Optimizing the Drying Temperature of Temulawak Simplicia (Curcuma xanthorrhiza Roxb.) Based on Water and Ash Content and Functional Compound. Paper presented at the Journal of Physics: Conference Series.
Anjusha, S., & Gangaprasad, A. (2014). Phytochemical and antibacterial analysis of two important Curcuma species, Curcuma aromatica Salisb. and Curcuma xanthorrhiza Roxb.(Zingiberaceae). Journal of Pharmacognosy and Phytochemistry, 3(3), 50-53.
Ayala-Soto, F. E., Serna-Saldívar, S. O., & Welti-Chanes, J. (2016). Effect of processing time, temperature, and alkali concentration on yield extraction, structure, and gelling properties of corn fiber arabinoxylans. Food hydrocolloids, 60, 21-28.
Aydar, A. Y. (2018). Utilization of response surface methodology in optimization of extraction of plant materials. Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes. InTech, 157-169.
Azahar, N. F., Gani, S. S. A., & Mokhtar, N. F. M. (2017). Optimization of phenolics and flavonoids extraction conditions of Curcuma Zedoaria leaves using response surface methodology. Chemistry Central Journal, 11(1), 96.
AzizA, S. A., RidwanA, T., & BatubaraA, I. (2018). Increasing Growth Rate and Production of Bioactive Compounds Curcuminoid and Xanthorrhizol in Javanese Turmeric (Curcuma xanthorrhiza Roxb.) Rhizomes with Biso Zyme Application. Journal of Tropical Crop Science Vol, 5(3).
Başpınar, Y., Üstündaş, M., Bayraktar, O., & Sezgin, C. (2017). Response Surface Methodology for Extraction of Curcumin from Turmeric and Piperine from Black Pepper. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13(3), 747754.
Darmawan, E., & Pramono, S. (2016). Essential Oil of Javanese Turmeric (Curcuma xanthorrhiza, Roxb) Decrease Level of LDL-Cholesterol and Body Weight In Rats. Indonesian Journal of Cancer Chemoprevention, 7(1), 6-8.
Devaraj, S., Ismail, S., Ramanathan, S., & FeiYam, M. (2013). In vivo toxicological investigations of standardized ethanolic extract of Curcuma xanthorrhiza Roxb. rhizome. J. Nat. Prod. Plant Resour, 3(1), 67-73.
Erpina, E., Rafi, M., Darusman, L. K., Vitasari, A., Putra, B. R., & Rohaeti, E. (2017). Simultaneous quantification of curcuminoids and xanthorrhizol in Curcuma xanthorrhiza by high-performance liquid chromatography. Journal of Liquid Chromatography & Related Technologies, 40(12), 635-639.
Haldar, S., Mishra, H. N., & Majumdar, G. C. (2016). Optimization of oleoresin extraction from Curcuma longa L. Using RSM and determination of the equilibrium constant. Journal of Food Processing and Preservation, 40(6), 11881198.
Hasham-Hisam, R., Noor, N. M., Roslan, M. N., Sarmidi, M. R., & Aziz, R. A. (2011). Optimization of extraction conditions of antioxidant activity from Zingiber zerumbet oleoresin. J. Appl. Sci, 11, 2394-2399.
Jang, M., Asnin, L., Nile, S. H., Keum, Y. S., Kim, H. Y., & Park, S. W. (2013). Ultrasound assisted extraction of quercetin from onion solid wastes. International journal of food science & technology, 48(2), 246-252.
Le Pham Tan, Q., TUAN, N. N., GIANG, B. L., THANG, T. D., VAN, N. T. P., MY,
Le, T. H. H., Phung, T. H., & Le, D. C. (2019). Development and Validation of an HPLC Method for Simultaneous Assay of Potassium Guaiacolsulfonate and Sodium Benzoate in Pediatric Oral Powder. Journal of analytical methods in chemistry, VoL2019, 1-9.
Madadi, S., Charbonneau, L., Bergeron, J.-Y., & Kaliaguine, S. (2020). Aerobic epoxidation of limonene using cobalt substituted mesoporous SBA-16 Part 1: Optimization via Response Surface Methodology (RSM). Applied Catalysis B: Environmental, 260, 118049.
Mary, H. P., Susheela, G. K., Jayasree, S., Nizzy, A., Rajagopal, B., & Jeeva, S. (2012). Phytochemical characterization and antimicrobial activity of Curcuma xanthorrhiza Roxb. Asian Pacific Journal of Tropical Biomedicine, 2(2), S637-S640.
Oon, S. F., Nallappan, M., Tee, T. T., Shohaimi, S., Kassim, N. K., Sa’ariwijaya, M. S. F., & Cheah, Y. H. (2015). Xanthorrhizol: a review of its pharmacological activities and anticancer properties. Cancer cell international, 15(1), 100.
Paulucci, V. P., Couto, R. O., Teixeira, C. C., & Freitas, L. A. P. (2013). Optimization of the extraction of curcumin from Curcuma longa rhizomes. Revista Brasileira de Farmacognosia, 23(1), 94-100.
Rajha, H. N., El Darra, N., Hobaika, Z., Boussetta, N., Vorobiev, E., Maroun, R. G., & Louka, N. (2014). Extraction of total phenolic compounds, flavonoids, anthocyanins, and tannins from grape byproducts by response surface methodology. Influence of solid-liquid ratio, particle size, time, temperature, and solvent mixtures on the optimization process. Food and Nutrition Sciences, 2014.
Rajkumari, S., & Sanatombi, K. (2017). Nutritional value, phytochemical composition, and biological activities of edible Curcuma species: A review. International journal of food properties, 20(sup3), S2668-S2687.
Rocchetti, G., Blasi, F., Montesano, D., Ghisoni, S., Marcotullio, M. C., Sabatini, S., . . . Lucini, L. (2019). Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food research international, 115, 319-327.
Rodriguez, R., Castillo, E., & Sinuco, D. (2019). Validation of an HPLC Method for Determination of Bisphenol-A Migration from Baby Feeding Bottles. Journal of analytical methods in chemistry, 2019, 6.
Rodríguez-Pérez, C., Quirantes-Piné, R., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2015). Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products, 66, 246-254.
Rosidi, A., Khomsan, A., Setiawan, B., Riyadi, H., & Briawan, D. (2016). Antioxidant potential of temulawak (Curcuma xanthorriza roxb). Pakistan J Nutr, 15(6), 556-560.
Salea, R., Widjojokusumo, E., Veriansyah, B., & Tjandrawinata, R. R. (2014). Optimizing oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide. Journal of food science and technology, 51(9), 2197-2203.
Subuki, I., Saidin, S. H., & Hisan, N. N. M. (2018). Optimisation of SC-CO2 Extraction of Curcuma zedoaria by Response Surface Methodology. International Journal of Engineering & Technology, 7(3.11), 84-88.
Soquetta, M. B., Terra, L. d. M., & Bastos, C. P. (2018). Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA-Journal of Food, 16(1), 400-412.
Spigno, G., Tramelli, L., & De Faveri, D. M. (2007). Effects of extraction time, temperature, and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81(1), 200-208.
Tabaraki, R., & Nateghi, A. (2011). Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology. Ultrasonics sonochemistry, 18(6), 1279-1286.
Taher, Z. M., & Sarmidi, M. R. (2015). Optimization Processing Parameters for Curcuma xanthorriza Oleoresin Yield and its Antioxidant Activity. International Journal of Biotechnology for Wellness Industries, 4(3), 97-102.
Theresia, W., Sugeng, R., Endang, L., & Abdul, R. (2019). Application of 1H-NMR specta and multivariation analysis for the authentication of Curcuma Xanthorrhiza from Zingiber cassumunar. International Journal of Applied Pharmaceutics, 11(4). Tušek, A. J., Benković, M., Valinger, D., Jurina, T., Belščak-Cvitanović, A., & Kljusurić, J. G. (2018). Optimizing bioactive compounds extraction from different medicinal plants and prediction through nonlinear and linear models. Industrial Crops and Products, 126, 449-458.
Tušek, A. J., Benković, M., Valinger, D., Jurina, T., Belščak-Cvitanović, A., & Kljusurić, J. G. (2018). Optimizing bioactive compounds extraction from different medicinal plants and prediction through nonlinear and linear models. Industrial Crops and Products, 126, 449-458.
Wang, X., Jiang, Y., & Hu, D. (2017). Antiproliferative activity of Curcuma phaeocaulis Valeton extracts using ultrasonic assistance and response surface methodology. Preparative Biochemistry and Biotechnology, 47(1), 19-31.
Xu, G., Hao, C., Tian, S., Gao, F., Sun, W., & Sun, R. (2017). A method for the preparation of curcumin by ultrasonicassisted ammonium sulfate/ethanol aqueous two phase extraction. Journal of Chromatography B, 1041, 167-174.
Zhang, C., Ji, J., Ji, M., & Fan, P. (2015). Acetylcholinesterase inhibitors and compounds promoting SIRT1 expression from Curcuma xanthorrhiza. Phytochemistry Letters, 12, 215-219.
Zhang, C. M., Fan, P. H., Li, M., & Lou, H. X. (2014). Two new sesquiterpenoids from the rhizomes of Curcuma xanthorrhiza. Helvetica Chimica Acta, 97(9), 1295-1300.
Zhang, H.-F., Yang, X.-H., Zhao, L.-D., & Wang, Y. (2009). Ultrasonic-assisted extraction of epimedin C from fresh leaves of Epimedium and extraction mechanism. Innovative food science & emerging technologies, 10(1), 54-60.
Zhang, Y.-Q., Jin, L., Duan, J., Zhao, G.-C., Xu, Y.-Y., Liu, J.-M., Su, S.-C. (2020). The Assessment of Two Species of Soapberry as Resources for High-Quality Biodiesel Production with an Optimized Method of Ultrasound-Assisted Oil Extraction. Forests, 11(2), 212.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Najiba Azemi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.