Mas Receptor as a Target for Neuropathic Pain Management: Insights into Angiotensin-(1-7) Signaling and Therapeutic Opportunities

Authors

  • Shalu Devi Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, INDIA.
  • Saajan Kumar Sharma Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, INDIA.
  • Sandip Tejpal Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, INDIA.

DOI:

https://doi.org/10.55544/jrasb.4.2.17

Keywords:

Neuropathic pain, Mas receptor, Angiotensin (1-7), Renin angiotensin system, Neuro-inflammation, pain management, Analgesia

Abstract

Mas is a G protein-coupled receptor (GPCR) that binds to Angiotensin (1-7) and it is evaluated as an important element of non classical Renin Angiotensin System. While the RAS axis has been considered as pro-inflammatory and pro-nociceptive by leveraging the Angiotensin II and AT1 receptor, the Angiotensin (1-7) /Mas axis offers anti-inflammatory, vessels dilating, and neuroprotective functions. It is produced by two mechanisms first, Angiotensin (1-7) is obtained from Angiotensin II via the mechanism of angiotensin converting enzyme 2 (ACE2) and also by the binding of the formed Ang-(1-7) to its receptor, Mas receptor, it activates several signaling pathways such as PI3K/Akt, ERK1/2 and nitric oxide (NO). These pathways together prevent neuronal death, decrease oxidative stress and inhibit the nuclear factor-kappa B (NF-κB), and reduces the expression of various cytokines like TNF-α, IL-1β and IL-6. With regard to neuropathic pain, the Mas receptor contributes to regulation of glial-neuronal crosstalk and negative regulation of microglial and astrocytic activity and neuroimmune balance. Experimental studies have shown that the use of Mas receptor by Angiotensin (1-7) or synthetic activators attenuates mechanical alodynia and thermal hypoesthesia, proving that the Marques and colleagues’ hypothesis has possible therapeutic applications. Also, the Mas receptor has functional cross-talk with other pain-modulatory systems, including the endogenous opioid and endocannabinoid systems, contributing to the enhancer of this sort of analgesia. Thus, the novel Angiotensin (1-7)/Mas receptor pathway can be considered as the novel promising candidate for the use of new non-opioid analgesic for the treatment of neuropathic pain. Further research in Mas receptor agonists, peptide analogs, and targeted drug delivery system shows that there is potential to practical application of these discoveries.

Downloads

Download data is not yet available.

References

Cavalli E, Mammana S, Nicoletti F, Bramanti P, Mazzon E. The neuropathic pain: An overview of the current treatment and future therapeutic approaches. International journal of immunopathology and pharmacology. 2019 Mar;33:2058738419838383.

Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C. Neuropathic pain. Nature reviews Disease primers. 2017 Feb 16;3(1):1-9.

Hao S, Lin S, Tao W, Zhuo M. Cortical Potentiation in Chronic Neuropathic Pain and the Future Treatment. Pharmaceuticals. 2025 Mar 4;18(3):363.

Guo SJ, Shi YQ, Zheng YN, Liu H, Zheng YL. The voltage-gated calcium channel α2δ subunit in neuropathic pain. Molecular Neurobiology. 2025 Feb;62(2):2561-72.

BARLOW A, BRUERA E. Neuropathic pain. 50 Pharmacotherapy Studies Every Palliative Practitioner Should Know. 2025 Jan 17:19.

Borbjerg MK, Wegeberg AM, Nikontovic A, Mørch CD, Arendt-Nielsen L, Ejskjaer N, Brock C, Vestergaard P, Røikjer J. Understanding the Impact of Diabetic Peripheral Neuropathy and Neuropathic Pain on Quality of Life and Mental Health in 6,960 People With Diabetes. Diabetes care. 2025 Feb 11:dc242287.

Vieira WF, Real CC, Martins DO, Chacur M. The Role of Exercise on Glial Cell Activity in Neuropathic Pain Management. Cells. 2025 Mar 24;14(7):487.

Hao S, Lin S, Tao W, Zhuo M. Cortical Potentiation in Chronic Neuropathic Pain and the Future Treatment. Pharmaceuticals. 2025 Mar 4;18(3):363.

Degutis M, Łażewska D, Barut J, Białoń M, Latacz G, Szczepańska K, Pietruś W, Werner T, Karcz T, Stark H, Kreiner G. Histamine H3 receptor blockade alleviates neuropathic pain through the regulation of glial cells activation. Biomedicine & Pharmacotherapy. 2025 Feb 1;183:117850.

Zhang W, Jiao B, Yu S, Zhang K, Sun J, Liu B, Zhang X. Spinal AT1R contributes to neuroinflammation and neuropathic pain via NOX2-dependent redox signaling in microglia. Free Radical Biology and Medicine. 2025 Feb 1;227:143-56.

Paulik KA, Ivanics T, Dunay GA, Fülöp Á, Kerék M, Takács K, Benyó Z, Miklós Z. Inhibition of the Renin–Angiotensin System Improves Hemodynamic Function of the Diabetic Rat Heart by Restoring Intracellular Calcium Regulation. Biomedicines. 2025 Mar 20;13(3):757.

Ho AM, Mizubuti GB, Phelan R, Klar G, Leitch J, Cupido T, Fleming M, Azargive S, Arellano RL. The Decision to Interrupt Renin-Angiotensin System Inhibitors Before Surgery Should Be Individualized. A&A Practice. 2025 Feb 1;19(2):e01911.

Alanazi IM, Mehboob R, Tariq A, Hameed S, Malik U, Sarwar N, Shahid I, Mehboob K. First evidence of immunomodulation of the renin-angiotensin system through substance P/neurokinin 1 receptor: a case and control study in hypertension and cardiac patients. Italian Journal of Medicine. 2025 Feb 6;19(1).

Pirri C, Pirri N, Petrelli L, Fede C, De Caro R, Stecco C. An Emerging Perspective on the Role of Fascia in Complex Regional Pain Syndrome: A Narrative Review. International Journal of Molecular Sciences. 2025 Mar 20;26(6):2826.

Balakumar P, Jagadeesh G. Game-changing breakthroughs to redefine the landscape of the renin–angiotensin–aldosterone system in health and disease. Cellular Signalling. 2025 Feb 1;126:111459.

Bhilare KD, Dobariya P, Hanak F, Rothwell PE, More SS. Current understanding of the link between angiotensin-converting enzyme and pain perception. Drug Discovery Today. 2024 Jul 6:104089.

Iwane S, Nemoto W, Miyamoto T, Hayashi T, Tanaka M, Uchitani K, Muranaka T, Fujitani M, Koizumi Y, Hirata A, Tsubota M. Clinical and preclinical evidence that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers prevent diabetic peripheral neuropathy. Scientific Reports. 2024 Jan 10;14(1):1039.

Du K, Li A, Zhang CY, Li SM, Chen P. Repurposing antihypertensive drugs for pain disorders: a drug-target mendelian randomization study. Frontiers in Pharmacology. 2024 Aug 29;15:1448319.

Fu B, Liang J, Hu J, Du T, Tan Q, He C, Wei X, Gong P, Yang J, Liu S, Huang M. GPCR–MAPK signaling pathways underpin fitness trade-offs in whitefly. Proceedings of the National Academy of Sciences. 2024 Jul 9;121(28):e2402407121.

Antonijevic M, Dallemagne P, Rochais C. Indirect influence on the BDNF/TrkB receptor signaling pathway via GPCRs, an emerging strategy in the treatment of neurodegenerative disorders. Medicinal Research Reviews. 2025 Jan;45(1):274-310.

Li T, Zheng X, Qu L, Ou Y, Qiao S, Zhao X, Zhang Y, Zhao X, Li Q. A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters. 2024 Oct 1;35(10):109792.

Huber T, Horioka-Duplix M, Chen Y, Saca VR, Ceraudo E, Chen Y, Sakmar TP. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Science Signaling. 2024 Sep 17;17(854):eadp3967.

Kise R, Inoue A. GPCR signaling bias: an emerging framework for opioid drug development. The Journal of Biochemistry. 2024 Apr;175(4):367-76.

Abreu VE, Barnes R, Borra V, Schurdak J, Perez-Tilve D. Chemogenetic engagement of different GPCR signaling pathways segregates the orexigenic activity from the control of whole-body glucose metabolism by AGRP neurons. Molecular Metabolism. 2025 Jan 1;91:102079.

Rao X, Li Z, Zhang Q, Lai Y, Liu J, Li L, Cheng H, Shen W, Sun D. α‐Hederin induces paraptosis by targeting GPCRs to activate Ca2+/MAPK signaling pathway in colorectal cancer. Cancer Medicine. 2024 Apr;13(8):e7202.

Chappell MC. The angiotensin-(1-7) axis: formation and metabolism pathways. Angiotensin-(1-7) A Comprehensive Review. 2019:1-26.

Xu P, Sriramula S, Lazartigues E. ACE2/ANG-(1–7)/Mas pathway in the brain: the axis of good. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2011 Apr;300(4):R804-17.

e Silva AC, Teixeira MM. ACE inhibition, ACE2 and angiotensin-(1⿿ 7) axis in kidney and cardiac inflammation and fibrosis. Pharmacological research. 2016 May 1;107:154-62.

Keidar S, Kaplan M, Gamliel-Lazarovich A. ACE2 of the heart: from angiotensin I to angiotensin (1–7). Cardiovascular research. 2007 Feb 1;73(3):463-9.

Simões e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin‐(1‐7) and M as receptor axis in inflammation and fibrosis. British journal of pharmacology. 2013 Jun;169(3):477-92.

Santos RA, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiological reviews. 2017 Dec 20.

Yamamoto K, Takeshita H, Rakugi H. ACE2, angiotensin 1-7 and skeletal muscle: review in the era of COVID-19. Clinical Science. 2020 Nov;134(22):3047-62.

Bader M. ACE2, angiotensin-(1–7), and Mas: the other side of the coin. Pflügers Archiv-European Journal of Physiology. 2013 Jan;465:79-85.

Morgos DT, Stefani C, Miricescu D, Greabu M, Stanciu S, Nica S, Stanescu-Spinu II, Balan DG, Balcangiu-Stroescu AE, Coculescu EC, Georgescu DE. Targeting PI3K/AKT/mTOR and MAPK signaling pathways in gastric cancer. International Journal of Molecular Sciences. 2024 Feb 3;25(3):1848.

Yang J, Zhang L, Wang Y, Wang N, Wei H, Zhang S, Ding Q, Sun S, Ding C, Liu W. Dihydromyricetin-loaded oxidized polysaccharide/L-arginine chitosan adhesive hydrogel promotes bone regeneration by regulating PI3K/AKT signaling pathway and MAPK signaling pathway. Carbohydrate Polymers. 2024 Dec 15;346:122614.

Nam OH, Kim JH, Kang SW, Chae YK, Jih MK, You HH, Koh JT, Kim Y. Ginsenoside Rb1 alleviates lipopolysaccharide‐induced inflammation in human dental pulp cells via the PI3K/Akt, NF‐κB, and MAPK signalling pathways. International Endodontic Journal. 2024 Jun;57(6):759-68.

Ji X, Zhang C, Yang J, Tian Y, You L, Yang H, Li Y, Liu H, Pan D, Liu Z. Kaempferol improves exercise performance by regulating glucose uptake, mitochondrial biogenesis, and protein synthesis via PI3K/AKT and MAPK signaling pathways. Foods. 2024 Mar 30;13(7):1068.

Wang H, Wang G, Meng Y, Liu Y, Yao X, Feng C. Modified Guo-Min decoction ameliorates PM2. 5-induced lung injury by inhibition of PI3K-AKT and MAPK signaling pathways. Phytomedicine. 2024 Jan 1;123:155211.

Wan M, Gan A, Dai J, Lin F, Wang R, Wu B, Yan T, Jia Y. Rhein induces apoptosis of AGS and MGC803 cells by regulating the Ras/PI3K/AKT and p38/MAPK signaling pathway. Journal of Pharmacy and Pharmacology. 2024 Oct 11:rgae115.

García-Domínguez M. NGF in Neuropathic Pain: Understanding Its Role and Therapeutic Opportunities. Current Issues in Molecular Biology. 2025 Jan 31;47(2):93.

Wang W, Wang Y, Huang X, Wu P, Li L, Zhang Y, Chen Y, Chen Z, Li C, Zhou Y, Zhang J. Pathophysiology‐Directed Engineering of a Combination Nanoanalgesic for Neuropathic Pain. Advanced Science. 2025 Feb;12(8):2405483.

Silva ÁJ, de Lavor MS. Nitroxidative Stress, Cell—Signaling Pathways, and Manganese Porphyrins: Therapeutic Potential in Neuropathic Pain. International Journal of Molecular Sciences. 2025 Feb 26;26(5):2050.

Tobori S, Tamada K, Uemura N, Sawada K, Kakae M, Nagayasu K, Nakagawa T, Mori Y, Kaneko S, Shirakawa H. Spinal TRPC3 promotes neuropathic pain and coordinates phospholipase C–induced mechanical hypersensitivity. Proceedings of the National Academy of Sciences. 2025 Mar 18;122(11):e2416828122.

Shi S, Yang S, Ma P, Wang Y, Ma C, Ma W. Genetic Evidence Indicates that Serum Micronutrient Levels Mediate the Causal Relationships Between Immune Cells and Neuropathic Pain: A Mediation Mendelian Randomization Study. Molecular Neurobiology. 2025 Mar 3:1-8.

Wang JL, Li Z, Song ZX, Zhao S, Zhao LB, Shuang PZ, Liu FF, Li HZ, Wang XL, Liu P. The effect of spinal cord STING/ATG5-mediated autophagy activation on the development of diabetic neuropathic pain in rats. Biochemical and Biophysical Research Communications. 2025 Mar 27:151686.

Chen B, Guo J, Gong C, Zhu C, Wu Y, Wang S, Zheng Y, Lu H. Proteomic analysis of spinal dorsal horn in prior exercise protection against neuropathic pain. Scientific Reports. 2025 Jan 18;15(1):2391.

Wang Y, Jiang T. Recent research advances in pain mechanisms in McCune–Albright syndrome thinking about the pain mechanism of FD/MAS. Journal of Orthopaedic Surgery and Research. 2024 Mar 21;19(1):196.

Bhilare KD, Dobariya P, Hanak F, Rothwell PE, More SS. Current understanding of the link between angiotensin-converting enzyme and pain perception. Drug Discovery Today. 2024 Jul 6:104089.

Szczepanska-Sadowska E. Neuromodulation of Cardiac Ischemic Pain: Role of the Autonomic Nervous System and Vasopressin. Journal of Integrative Neuroscience. 2024 Mar 1;23(3):49.

Lubejko ST, Livrizzi G, Buczynski SA, Patel J, Yung JC, Yaksh TL, Banghart MR. Inputs to the locus coeruleus from the periaqueductal gray and rostroventral medulla shape opioid-mediated descending pain modulation. Science Advances. 2024 Apr 26;10(17):eadj9581.

Chen X, Chen Y, Shu R, Lu S, Gu MM, Shen C, Wang Z, Cui X. Investigating the effects of global gene knockout of MrgF on motor performance and pain sensitivity in mice. Hereditas. 2025 Mar 3;162(1):31.

Jiang Y, Ye F, Zhang J, Huang Y, Zong Y, Chen F, Yang Y, Zhu C, Yang T, Yu G, Tang Z. Dual function of MrgprB2 receptor-dependent neural immune axis in chronic pain. Journal of Advanced Research. 2025 Feb 28.

Van Remoortel S, Hussein H, Boeckxstaens G. Mast cell modulation: A novel therapeutic strategy for abdominal pain in irritable bowel syndrome. Cell Reports Medicine. 2024 Oct 7.

Zou Y, Liu C, Wang Z, Li G, Xiao J. Neural and immune roles in osteoarthritis pain: Mechanisms and intervention strategies. Journal of Orthopaedic Translation. 2024 Sep 1;48:123-32.

García-Domínguez M. A comprehensive analysis of fibromyalgia and the role of the endogenous opioid system. Biomedicines. 2025 Jan 11;13(1):165.

Downloads

Published

2025-04-30

How to Cite

Devi, S., Sharma, S. K., & Tejpal, S. (2025). Mas Receptor as a Target for Neuropathic Pain Management: Insights into Angiotensin-(1-7) Signaling and Therapeutic Opportunities. Journal for Research in Applied Sciences and Biotechnology, 4(2), 167–176. https://doi.org/10.55544/jrasb.4.2.17

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.