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ABSTRACT 

 
The dynamics of arterial wall remodelling under hypertensive conditions is discussed here. Sustained hypertension was 

simulated by a step increase in blood pressure. The arterial wall was considered to be a thick walled tube made of non linear 

elastic incompressible material the driving stimuli for the geometric adaptation are the normalized deviations of wall stresses 

from their values under normotensive conditions. Meachanical adaption is driven by the difference between the area compliance 

under hypertensive and normotensive conditions. The predicted time course of the geometry and mechanical properties of 

arterial wall are in good qualititative agreement with published findings. Crank Nicolson finite difference scheme is used for 

computation purpose which is fast conversing in comparision to the method used by Rachev et al (1998). 
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I. INTRODUCTION 
 

There exists an increasing interest in the 

investigation of changes that appear in the geometry 

structure and mechanical properties of the arterial wall 

when the vessels are subjected to abnormal pressure and 

flow conditions (Rachev et al 1998). Understanding of 

the processes of arterial adaptation is of importance 

because it has been postulated that some pathological 

states might be considered as a result of remodelling 

gone into wrong direction (fung et al. 1993) 

Experimental studies on geometric and oral 

recognition of terraneral parels Ave been carried out it 

several directions bors have tidied De adaptive response 

of the vascular wall to change in bed flow increase of the 

wall thickness and a reduction of the il riu lengphudimal 

thretch ratio of dogs aasta due to sustained hypenension 

has been observed by vaishnave (1990) 

Coupling benveen grametric and mechanical 

moshuarities in the process of arterial wall deformation 

enhances the complexity in the adaptation proosdire 

described above. Thickening of the arterial wall in 

response to increased pressure causes a change of the 

defensed arterial radius. Then, even when the flow is 

kept constant, the shear stress at the arterial endothelium 

is altered which engages mechanisme for the adaptation 

of the inner radius. On the other hand any change of 

mechanical properties of the vascular material causes 

changes in the stress and strain distribution in the arterial 

wall even when the artery is subjected to constant fond. 

An efficient approach to better understanding 

and assessment of the contribution of different factors 

involved in arterial wall as well as interrelation between 

them, in the mathematical modelling and numerical 

simulation of the process of remodelling under altered 

pressure or flow conditions 

A different approach to study the dynamics of 

the geometric remodelling in response to changes in 

blood pressure has been applied by Rachev et al (1996). 

They studied the dynamics of geometric 

adaptation in response to change in blood pressure. It 

was assumed that during remodelling the zero-stress 

configuration of the arterial cross section remains a 

circular sector. The wall changes only its geometric 
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dimension while the material properties remain the 

same. 

Governing Equations: 

For incompressible wall material and radial, 

circumferential and axial stretch ratio are given by 

 

 

 

 
with r 𝑖 being inner radius in the deformed state and I 𝐿 

and L 𝑡 being the length of the arterial segment at 

deformed and zero-stress state respectively The non 

vanishing components of the green strain tensor are 

 
where W(e 𝑟 , e 𝑂, e 𝑧) is the strain energy function which 

completely describe the mechanical properties of the 

wall material q is the unknown scalar function that has to 

be determined from the equilibrium equation and 

boundary conditions.  

After integration of the differential equations of 

equilibrium and imposing the boundary conditions for 

the internal surface sigma 𝑅(r = r 1) = - p and the outer 

surface sigma 𝑟 (r = r 𝑂) = 0 the following expression for 

the wall stresses are obtained 

 
where r 𝑖 and r 𝑂are the deforined inner and outer radius, 

respectively Pressure p and the axial force F 𝑧relate to 

wall stresses given below. 

 
The Everage Cicrcum ferential axial sresses are given 

below  

 
The mean shear stress at the inner arterial surface is 

given by poiseuille,s law. 

 

where Q is flow and η blood viscosity.  

 

II. REMODELLING RATE 

EQUATIONS 
 

Following Rachev et al (1998) the artery is first 

considered under normotensive conditions. The 

dimensions at the zero stress state are LN. L. L and HN. 

Superscripts N and H denote the values under 

normotensive and hypertensive conditions respectively, 

the vessel is subjected to normal blood pressure p" and is 

kept at constant deformed length Induced arterial 

hypertension is modeled by a step increase in blood 

pressure from pt to ph. Blood flow rate is kept constant.  

To monitor the remodelling of zero-stress state, the 

following growth parameters are defined. 

 
It is postulated that the artery remodels its zero-

stress configuration in a manner to restore the 

distribution of circumferential stress and the magnitude 

of the average axial stress as they are under 

normotensive condition. Since circumferential stresses 

vary smoothly through out the arterial wall the following 

remodeling rate equation for the growth parameters are 

postulated. 

 

 

 
 

 
 

Applying Crank-Nicolson scheme in the above 

equations, the above equations become in the discretized 

form as follows: 

The aim of this study is to propose a relatively simple 

but general mathematical model, using Crank Nicolson 

Scheme which accounts for both the geometric and 

mechanical remodelling of arteries in response to 

induced hypertension. Theoretical predictions of the 

model are compared against available experimental data 

to assess the validity of certain new hypothesis 

concerning the driving stimuli and interelation between 

wall-stress-dependent compliance adaptation. 

 

…….16 
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Figure 1. Schematic diagram of an artery at (a) zero-

stress state and (b) loaded state 

 

The artery is consider to be a thick walled tube 

made of non-linear, elastic orthotropic and 

incompressible material. At the zero stress state the 

vessel cross -section is considered to be a circular sector 

with the following dimensions. Inner arc length L₁, outer 

arc length Lo and thickness H. the inner and outer radii 

of curvature (R, R) and the opening angle o. are 

calculated using the formulae. 

Schematic diagram of an artery at (a) zero stress 

state (b) loaded state under physiological loading, 

arteries are in a finite axisymetric plane strain state. The 

deformed arterial cross section is shown in fig (b)  

 
 

III. NUMERICAL METHOD 
 

The system of equations (13) to (19) are highly 

non linear because all variables depend on complex 

manner on the geometric parameter of the current zero-

stress configuration and elastic properties More over 

equations (13) to (17) are coupled and have to be solved 

simultaneously with the equations (2) to (10) for 

inflation at pressure P ^ H and longitudinal extension 2, 

at t = 0 when the pressure is increased in step wise 

manner from P ^ N to P ^ H 

The initial value for the growth parameters is 

alpha = beta = gamma = delta = xi = 1 The values of the 

inner deformed radius stresses and the compliance 

C_{A} Change in a stepwise manner when the pressure 

increase from P ^ N to P ^ H and are calculated using the 

dimensions of the normotensive artery subjected to the 

hypertensive pressure at the normotensive in situ, 

longitudinal axial stretch ratio λ. 

The problem of determining the functions a (t) 

beta(t) * gamma(t) and 8 (t) from the governing 

equations and initial conditions kappa(0) = beta(0) = 

gamma(0) = delta(0) = hi a single valued solution 

making use of equation (1) it is possible to determine 

that time variations of the dimensions of the zero stress 

configuration of the arterial cross section and the 

longitudinal stretch ratio. Solving equations (18) and 

(19) it is possible to obtain the time course of the elastic 

properties of the artery also. The integration of (16) to 

(19) accounts for the flow-induced adaptation of the 

artery. Equation (16) & (17) are solved by Crank-

Nicolson Scheme. 

 

IV. RESULTS AND DISCUSSION 
 

A numerical study using data available in the 

literature was performed. Data for zero-stress 

configuration strain energy function for a rabbit thoracic 

aorta were taken from the paper chuong and Fung 

(1986). The dimensions of the zero stress state are Lo = 

11.25 mm Li = 9.75mm -1086 degree they were 

accepted to correspond to the homeostatic case in which 

the artery is subjected to an arterial pressure of P^ prime 

prime = 13.33k*P_{4} and in situ axial stretch of the 

material constants c = 22.4 kpa b_{1} = 1.0672 , b_{2} 

= 0.4775 , b_{3} = 0.0499 b_{4} = 0.903 b_{z} = 585 

dot y - x =1.6 b_{s} = 0.0042 for purpose qualititaive 

analysis. (See Rachev et al (1998)), induced 

hypertension is simulated by a step increase to a pressure 

of p ^ 11 = 21.33 kpa. 

The present study predicts a monotonic steady 

state approximately 50% higher than the thickness of the 

normotensive aorta. The time course of the opening 

angle shows very rapid increase, reaching a maximum, 

after which the angle decrease to an asymptotic value. 

The present study utilizes a phenomenological 

model for wall remodelling in which stress-driven 

processes at the molecular cellular and tissue levels are 

all lumped in to remodelling rate equations linking the 

cause (stresses) and the effect (remodelling) this is of 

course, an over simplifications of the underlying biology 

in order to yield mathematically simple models. In 

reality, however the adaptation to stress and wall shear 

are fundamentaly different, wall stress induces growth 

principally through smooth muscle hypertrophy, while 

increased initial shear leads to proliferation of smooth 

muscle cells. 

The pressure-outer radius relationships of Fig. 

2(a) show the theoretical prediction of the response of 

the normotensive and adapted hypertensive aorta inflated 

at in situ length. The curves represent the mechanical 

behaviour of the vessels incorporating both the inherent 

elastic properties of the vascular material and the 

geometric dimensions at the zero-stress state. The results 

are in good agreement with experimental findings of 

Matsumoto and Hayashi (1994) and Rachev at. el 

(1998). 

The use of Crank Nicolson Scheme saves a lot 

of computer time. These simulation have been 

performed in Pantium II. Linearized mechanical 

response of the arteries expressed in terms of the 
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Peterson pressure-strain elastic modulus is shown in fig. 

2(b). 

 
Figures 2: (a) and 2(b) illustrate the time variations 

of the comploiance, C_{A}, and Peterson modulus, 

E_{p} respectively 

 
Fig. 3 (a) Pressure-normalized outer radius curves of 

the normotensive and hypertensive (adapted) norta; 

(b) Pressure-strain elastic modulus versus pressure 

for normotensive and hypertensive (adapted) aorta 

In brief the proposed scheme is found simple 

and most satisfying. 
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