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ABSTRACT 

 
Let A be a prime ∗−algebra and Φ a λ−Jordan triple deriva- tion on A, that is, for every A, B, C ∈ A, 

Φ(A ⋄ B) = Φ(A) ⋄ B + A ⋄ Φ(B) wher A ⋄λ B = AB∗ + λBA such that a real scalar |λ| ̸= 0, 1, and Φ is addi- tive. 

moreover, if Φ(I) and Φ(il) are selfadjiont then Φ is a ∗−derivation 
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I. INTRODUCTION 
 

Let be a ring. For A, B, We denote by A  B 

= AB + BA∗ and [A, B] = AB BA∗, the Jordan 

product and the Lie product, respectively. These 

products have recently attracted many authors’ 

attention (for example, see[2, 7, 10, 11]). in 

addition, some authors have considered triple

 products of three elements. For example, the 

outhors in [4] considered two von Neumann 

algebras  and such that one of them has no central 

abelian projections.  Let λ = 1 be 

a non-zero complex number, and let Φ : be a, not 

necessarily linear, 

bijection with Φ(I) = I. then, Φ preserves the 

following condation 

Φ(A ⋄λ B ⋄λ C) = Φ(A) ⋄λ Φ(B) ⋄λ Φ(C), (1.1) 

for A, B, C ∈ A if and only if one of the following 

statements holds: 

• λ ∈ R, and there exists a central projection P 

∈ A such that Φ(P ) is a central projection in B, Φ|AP 

: AP → BΦ(P ) is a linear ∗−isomorphism and 

Φ|A(I−P ) : A(I−P ) → B(I−Φ(P )) is conjugate 

linear ∗−isomorphism. 

• λ ̸= R, and Φ is a linear ∗−isomorphism. 

the map Φ which holds in 1.1 preserves the λ Jordan 

triple product. we should note that λ is not 

necessarily associative. in order to clarify this, we 

mention that 

A ⋄λ B ⋄λ C := (A ⋄λ B) ⋄λ C = ABC + λ(BA∗C + 

CB∗A∗) + |λ|2CAB∗ (1.2) 

For more papers regarding maps preserving the 

triple product, the interested reader may refer [3, 5, 

8, 12] 

2010 Mathematics Subject Classification. 46J10, 

47B48, 46L10. 
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1 

we define λ  Jordan   product by A λ B = AB 

+λBA∗. we say that the map Φ (not necessarily 

linear) with the property of Φ(A λB) = Φ(A) λB+A 

λΦ(B) is a λ  Jordan   derivation map. it is clear 

that, for λ =  1 and λ = 1, the λ Jordan derivation 

map is a Lie derivation and a Jordan derivation, 

respectively [1]. we should mention here that, 

whenever we say Φ is a derivation, it means that 

Φ(AB) = Φ(A)B + AΦ(B). 

Recently, Yu and Zhang in [14] proved that every 

non-linear Lie derivation from a factor von Neumann 
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algebra into itself is an additive derivation. Also, Li, 

Lu and Fung [6] investigated a non-linear λ Jordan 

derivation. they showed that, if ( ) is a von 

Neumann algebra without central ablian 

projections and λ is a non-zero scaler, then 

Φ : A → B(H) 

is a non-linear λ  Jordan derivation if and only if Φ is 

an additive derivation. in [13], the authors 

showed that the Jordan derivation map, i.e., Φ(A 1 

B) = Φ(A) 1 B + A  1 Φ(B), on every factor von 

Neumann algebra ( ) 

is an additive derivation. 

the authors in [9] introduced the concept of Skew 

Lie triple derivations. A map 

Φ : A → A 

is a non-linear Skew Lie triple derivation if 

Φ([[A, B]∗, C]∗) = [[Φ(A), B]∗, C]∗ + [[A, Φ(B)]∗, C] + 

[[A, B]∗, Φ(C)]∗ 

for all A, B, C , where [A, B] = AB BA∗. They 

showed that, it Φ preserves that above 

charactrizations on factor von Neumann algebras, 

then Φ is additive ∗−derivation. in this paper, 

motivated by the above results, we consider a map 

Φ on a prime ∗−algebra A which holds under the 

following conditions Φ(A ⋄ B) = Φ(A) ⋄ B + A ⋄ 
Φ(B) where A ⋄ B = AB∗ + λBA is such that a real 

scalar |λ| ̸= 0, 1, and Φ is additive. If Φ(I) and Φ(iI) are 

selfadjiont then Φ is a ∗−derivation. we say that A is 

prime, that is, for A, B ∈ A, if AAB = {0}, then A 

= 0 or B = 0. 

1. MAIN RESULTS 

Our main theorem is as follows: 

Theorem 2.1. Let A be a prime ∗-algebra with unit 

I and a nontrivial projec- tion. Then, the map Φ : A 

→ A satisfies the following condition 

Φ(A ⋄ B) = Φ(A) ⋄ B + A ⋄ Φ(B) (2.1) 

where A ⋄λ B = AB∗ + λBA is such that a real 

scalar |λ| ̸= 0, 1, is additive. 

Proof. Let P1 be a nontrivial projection in A and 

P2 = IA − P1. Denote 

Aij = PiAPj, i, j = 1, 2, Then, 

2 

A = Aij. 

i,j=1 

For every A ∈ A, we may write A = A11 + A12 + A21 + 

A22. In all which follows, when we write Aij, it 

indicates that Aij ∈ Aij. in order to show additivity 

of Φ on A, we use the above partition of A and 

provide some claims wich prove that Φ is additive 

on each Aij, i, j = 1, 2. 

the above theorem is proven by several claims. 

Claim 1. We show that Φ(0) = 0. 

Proof. if Φ(0) = 0, then, by successively putting A = 

0, B = 0, and then,C = 0 

in 1.2, we obtain a contradiction. □ 

Claim 2. For each A12 ∈ A12 and A21 ∈ A21 we have 

Φ(A12 + A21) = Φ(A12) + Φ(A21). 

Proof. We show that 

T = Φ(A12 + A21) − Φ(A12) − Φ(A21) = 0. 

we can write 

Φ(A12 + A21) ⋄ (p1 − p2) + (A12 + A21)Φ(p1 − p2) 

= Φ((A12 + A21) ⋄ (p1 − p2)) 

= Φ(A12 ⋄ (p1 − p2)) + Φ(A21 ⋄ (p1 − p2)) 

= (Φ(A12) + Φ(A21)) ⋄ (p1 − p2) + (A12 + A21) ⋄ Φ(p1 − p2) 

thus we have 

T ⋄ (p1 − p2) = 0 

Since T = T11 + T12 + T21 + T22, then 

(1 + λ)T11 + (1 − λ)T21 − (1 − λ)T12 − (1 + λ)T22 = 0 

we know that |λ| ̸= 0, 1 then 

T11 = T12 = T21 = T22 = 0 

□ 

Claim 3. For each A11 ∈ A11, A12 ∈ A12, A21 ∈ A21 

we have 

Φ(A11 + A12 + A21) = Φ(A11) + Φ(A12) + Φ(A21). 

 

Proof. we show that for T in A the following holds 

T = Φ(A11 + A12 + A21) − Φ(A11) − Φ(A12) − Φ(A21) = 0.

 (2.2) 

we can write 

Φ(A11 + A12 + A21) ⋄ (P1 − P2) + (A11 + A12 + A21) ⋄ Φ(P1 

− P2) 

= Φ((A11 + A12 + A21) ⋄ (P1 − P2)) 

= Φ(A11 ⋄ (P1 − P2)) + Φ(A12 ⋄ (P1 − P2)) + Φ(A21 ⋄ (P1 − 

P2)) 

= (A11 + A12 + A21) ⋄ Φ(P1 − P2) ⋄ (Φ(A11) + Φ(A12) + 

Φ(A21)) ⋄ (P1 − P2). 

Then we have 

since T = T11 + T12 + T21 + T22 we obtian 

(1 + λ)T11 − (1 − λ)T12 + (1 − λ)T21 − (1 + λ)T22 = 0 

since |λ| ̸= 0, 1 we have T11 = T12 = T21 = T22 = 0 □ 

Claim 4. For each A11 ∈ A11, A12 ∈ A12, A21 ∈ A21, 

A22 ∈ A22 we have 

Φ(A11 + A12 + A21 + A22) = Φ(A11) + Φ(A12) + Φ(A21) + 

Φ(A22). 

Proof. we show that for T in A the following holds 

T = Φ(A11 + A12 + A21 + A22) − Φ(A11) − Φ(A12) − Φ(A21 − 

Φ(A22) = 0 (2.3) 

From Claim 3 we can rewrite 

(A11 + A12 + A21 + A22) ⋄ Φ(P1) 

+Φ(A11 + A12 + A21 + A22) ⋄ p1 

= (Φ(A11 + A12 + A21 + A22) ⋄ p1) 

= Φ((A11 + A12 + A21) ⋄ P1) + Φ(A22 ⋄ P1) 

= Φ(A11 ⋄ P1) + Φ(A12 ⋄ P1) + Φ(A21 ⋄ P1) + Φ(A22 ⋄ P1) 

= (A11 + A12 + A21 + A22) ⋄ Φ(P1) 

+(Φ(A11) + Φ(A12) + Φ(A21) + Φ(A22)) ⋄ P1 

then we have 

Thus, (1 + λ)T11 + T12 + λT21 = 0 thereforT11 = T12 = T21 

= 0. 

similary we can show that T22 = 0 □ 

Claim 5. For each Aij, Bij ∈ Aij such that i ̸= j, 

we have 

Φ(Aij + Bij) = Φ(Aij) + Φ(Bij). 

Proof. for Aij, Bij ∈ Aij we have 

(Aij + Pi) ⋄ (Pj + Bi
∗
j ) = Aij + Bij + λBi

∗
j Aij + 

λBij (2.4) 
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From equition (4 ) and clain (4) we have 

Φ(Aij + Bij) + Φ(λBi
∗
j Aij) + Φ(λBi

∗
j ) 

= Φ((Aij + Pi) ⋄ (Pj + Bi
∗
j )) 

= Φ(Aij + Pi) ⋄ (Pj + Bi
∗
j ) + (Aij + Pi) ⋄ Φ(Pj + 

Bi
∗
j ) 

= (Φ(Aij) + Φ(Pi)) ⋄ (Pj + Bi
∗
j ) + (Aij + Pi) ⋄ 

(Φ(Pj) + Φ(Bi
∗
j )) 

= Φ(Aij ⋄ Pj) + Φ(Aij ⋄ Bi
∗
j ) + Φ(Pi ⋄ Pj) + Φ(Pi ⋄ 

Bi
∗
j ) 

= Φ(Aij) + Φ(Bij) + Φ(λBi
∗
j Aij) + Φ(λBi

∗
j ). 

thus 

 

Φ(Aij + Bij) = Φ(Aij) + Φ(Bij). 

□ 

Claim 6. For Aii, Bii ∈ Aii such that 1 ≤ i ≤ 2, we 

have 

Φ(Aii + Bii) = Φ(Aii) + Φ(Bii). 

Proof. We show that 

T = Φ(Aii + Bii) − Φ(Aii) − Φ(Bii) = 0. 

we can write for i ̸= j 

(Aii + Bii) ⋄ Φ(Pj) + Φ(Aii + Bii) ⋄ Pj 

= Φ((Aii + Bii) ⋄ Pj) 

= Φ(Aii ⋄ Pj) + Φ(Bii ⋄ Pj) 

= (Aii + Bii) ⋄ Φ(Pj) + (Φ(Aii) + Φ(Bii) ⋄ Pj). 

therefore 

Tij + λTji + (1 + λ)Tjj = 0. it follows that Tij = Tji = 

Tjj = 0 from claim (5) every Cij ∈ Aij we have 

Cij ⋄ Φ(Aii + Bii) + Φ(Cij) ⋄ (Aii + Bii) 

= Φ(Cij ⋄ (Aii + Bii)) 

= Φ(Cij ⋄ Aii) + Φ(Cij ⋄ Bii) 

= Cij ⋄ (Φ(Aii) + Φ(Bii)) + Φ(Cij) ⋄ (Aii + Bii). 

Thus, 

 

Cij ⋄ T = 0. 

By primeness since T = T11 + T12 + T21 + T22 we 

obtian Tii = 0 Hence the aditivith of Φ comes from 

claims (1)-(6) □ 

In the remainder of the paper we show that Φ is a 

∗−derivation. 

 

Theorem 2.2. let A be a prime ∗−algebra. let the 

map 

Φ : A → A 

satisfy the condition 

Φ(A ⋄ B) = Φ(A) ⋄ B + A ⋄ Φ(B) (2.5) 

where A · B = A∗B − λBA∗ for A, B ∈ A if Φ(I) and 

Φ(iI) are selfadjoint, then 

Φ is a ∗−derivation. 

Proof. we present the proof of the above theorem 

several claims. from theorem 

2.1 we need to prove that Φ is selfadjoint and 

has the derivation property. □ 

Claim 7. if Φ(I) and Φ(iI) are selfadjoind then Φ(I) 

= Φ(iI) = 0 

Proof. we have 

Φ(I ⋄ I) = Φ((1 + λ)I) = Φ(I)∗ + λΦ(I) + (1 + λ)Φ(I) = 

2Φ(I) + 2λΦ(I). 

thus 

Φ(λI) = Φ(I) + 2λΦ(I). (2.6) 

on the other hand we have 

Φ(iI ⋄ iI) = Φ((1 − λ)I) = i(−1 + λ)Φ(iI) + iΦ(iI)∗ + 

λiΦ(iI) = 2λiΦ(iI) 

thus 

Φ(I) − Φ(λI) = 2λiΦ(iI) (2.7) 

From (2.6) and (2.7) we obtain 

−λΦ(I) = λiΦ(iI) (2.8) 

From (2.8) we have 

 

Thus 

 

(−λΦ(I))∗ = (λiΦ(iI))∗ (2.9) 

−λΦ(I)) = −λiΦ(iI) (2.10) 

From (2.8) and (2.10) we hav 

 

Φ(I) = Φ(iI) = 0 

□ 

Claim 8. we prove that Φ preserves the star Proof. 

for every A ∈ A we have 

Φ((1 + λ)A) = Φ(A ⋄ I) = Φ(A) ⋄ I = (1 + λ)Φ(A) 

It follows that 

 

Φ(λA) = λΦ(A) (2.11) 

also Thus 

 

Φ(A∗ + λA) = Φ(I ⋄ A) = I ⋄ Φ(A) = Φ(A)∗ + λΦ(A) 

Φ(A∗) = Φ(λA) = Φ(A)∗ + Φ(λA) (2.12) 

From ( 2.11) and (2.12) we obtian 

Φ(A∗) = Φ(A)∗ 

□ 

Claim 9. Φ(iA) = iΦ(A) For every A ∈ A. 

Proof. for every A ∈ A from claim (8) we have 

(−1 + λ)Φ(iA)  =  −Φ(iA) + λΦ(iA) 

=  −Φ(iA) + Φ(iλA) 

= Φ(A ⋄ iI) 

=  Φ(A) ⋄ iI 

=  −iΦ(A) + λiΦ(A) 

= (−1 + λ)iΦ(A) 

Thus 

 

From (2.13) we have 

(−1 + λ)Φ(iA) = (−1 + λ)iΦ(A) (2.13) 

Φ(iA) = iΦ(A) 

□ 

Claim 10. Φ is derivation. 

Proof. For every A, B ∈ A we have 

Φ(AB + λB∗A)  =  Φ(A ⋄ B∗) 

=  Φ(A) ⋄ B∗ + A ⋄ Φ(B∗) 

=  Φ(A)B + λB∗Φ(A) + AΦ(B∗)∗ + λΦ(B∗)A. 

Thus 
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− 

− 

∗ 

∗− 

Φ(AB) + Φ(λB∗A) = Φ(A)B + AΦ(B) + λΦ(B∗)A

 (2.14) 

on the other hand 

Φ(AB − λB∗A) = Φ(iA) ⋄ Φ(iB∗) 

= Φ(iA) ⋄ (iB∗) + (iA) ⋄ Φ(iB∗) 

= −iΦ(iA)B + iλB∗Φ(iA) + (iA)Φ(iB∗)∗ + 

λΦ(iB∗)(iA) 

= Φ(A)B − λB∗Φ(A) + AΦ(B) − λΦ(B∗)A 

 

Thus 

Φ(AB − λB∗A) = Φ(A)B + AΦ(B) − λB∗Φ(A) − 

λΦ(B)∗A (2.15) 

From (2.14) and (2.15) we have 

Φ(AB) = AΦ(B) + Φ(A)B. 
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