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ABSTRACT 

 
In this paper we present some interesting applications of the matrix’s multiplication, that include the Leslie matrix 

and population change, which we calculate this kind of changes from year to other year by matrix multiplication. Another 

important part of the paper is Analysis of Traffic Flow, we represent the flow of traffic through a network of one-way streets. 

Another much important part is the production costs, this is fantastic usage of matrix multiplication, in which, A company 

manufactures three products. Its production expenses are divided into three categories, here in this paper we well describe this 

beautiful issue. By matrix multiplication, we can encode and decode messages. To encode a message, we choose an 𝒏 × 𝒏 

invertible matrix 𝑨 and multiply the uncoded row matrices (on the right) by 𝑨 to obtain coded row matrices, this idea will be 

clarify by some useful examples. Also we used to study certain relationships between objects by matrix multiplication. We will 

clarify all of these applications by useful examples. In this paper, we present six different applications of matrix multiplication. 

 

Keywords- Matrix multiplication, matrices, population Change, population, traffic flow. 

 

 

 

I. INTRODUCTION 
 

This required to define the product of two 

matrices, and also has need to describe matrix 

multiplication. This article aims to promote several 

application aspects of matrix multiplication [1]. 

Experience has led mathematicians to the following 

more useful definition of matrix multiplication.   

Definition. The product of two matrices 𝐴 ∈
𝑀𝑚,𝑛(𝐹) and 𝐵 ∈ 𝑀𝑛,𝑝(𝐹) (such that the number of 

columns 𝑛 of 𝐴 equals the number of rows 𝑛 of 𝐵) is the 

unique matrix 𝐴𝐵 ∈ 𝑀𝑚,𝑝(𝐹) such that 

 

𝐴(𝐵𝑋) = (𝐴𝐵)𝑋 

 

for all 𝑋 ∈ 𝐹𝑝 [10]. 

Way to determine whether a product of two 

matrices is defined is to write down the size of the first 

factor and, to the right of it, write down the size of the 

second factor. As shows in the following, the inside 

numbers are the same, then the product is defined. The 

outside numbers then give the size of the product [3], we 

have 

 

 
 

For example,  

 

𝐴 = [
   5 −1  4
−3   6  0

]     and    

𝐵 = [
9 4 −8      2    
7 6 −1      0     
−2   5   3 − 4    

]. 

 

Since 𝐴 is a 2 × 3 matrix and 𝐵 is a 3 × 4 

matrix, the number of columns of 𝐴 equals the number 

of rows of 𝐵 (three in each case). Therefore, 𝐴 and 𝐵 can 

be multiplied, and the product matrix 𝐶 = 𝐴𝐵 is a 2 × 4  

matrix, because 𝐴 has two rows and 𝐵 has four columns. 

To calculate each entry of 𝐶, we take the dot product of 
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the appropriate row of 𝐴 with the appropriate column of 

𝐵. For example, to find 𝑐11, we take the dot product of 

the 1st row of 𝐴 with the 1st column of 𝐵: 

 

𝑐11 = [5,−1, 4] ⋅ [
   9  
   7  
−2  

]

= (5)(9) + (−1)(7) + (4)(−2)
= 45 − 7 − 8 = 30. 

 

Find 𝑐23, we take the dot product of the 2nd 

row of 𝐴 with the 3rd column of 𝐵: 

 

𝑐23 = [−3, 6, 0] ⋅  [
  −8  
  −1  
     3  

]

= (−3)(−8) + (6)(−1) + (0)(3)
= 24 − 6 + 0 = 18. 

 

The other entries are computed similarly, 

yielding 

 

𝐶 = 𝐴𝐵 = [
  30   34 −27  − 6  
  15   24  18   − 6

] [8].  

 

Finally we found the product of tow matrices 𝐴 

and 𝐵 in the form [
  30   34 −27  − 6  
  15   24  18   − 6

]. 

 

      Note that, the matrix multiplication is not 

commutative: Usually 𝐴𝐵 ≠ 𝐵𝐴. But matrix 

multiplication is associative: (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) and 

matrix operations are distributive: 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 

and (𝐵 + 𝐶)𝐷 = 𝐵𝐷 + 𝐶𝐷 [4]. The componentwise 

definition of scalar multiplication will come as no 

surprise. If 𝐴 is an 𝑚 × 𝑛 matrix and 𝑐 is a scalar, then 

the scalar multiple 𝑐𝐴 is the 𝑚 × 𝑛 matrix obtained by 

multiplying each entry of 𝐴 by 𝑐. More formally, we 

have  

  

𝑐𝐴 = 𝑐[𝑎𝑖𝑗] = [𝑐𝑎𝑖𝑗] [3]. 

 

Now we will discuss the main part of the paper, 

applications of matrix multiplication in population 

Change, population movement, analysis of traffic 

flow, (0, 1)-matrices, production cost and encode and 

decode messages by matrix multiplication. 

 

II. THE LESLIE MATRIX AND 

POPULATION CHANGE 
 

The population of a colony of animals depends 

on the birth and mortality rates for the various age 

groups of the colony. For example, suppose that the 

members of a colony of mammals have a life span of 

less than 3 years. To study the birth rates of the colony, 

we divide the females into three age groups: those with 

ages less than 1, those with ages between 1 and 2, and 

those of age 2. From the mortality rates of the colony, 

we know that 40% of newborn females survive to age 1 

and that 50% of females of age 1 survive to age 2. We 

need to observe only the rates at which females in each 

age group give birth to female offspring since there is 

usually a known relationship between the number of 

male and female offspring in the colony. Suppose that 

the females under 1 year of age do not give birth; those 

with 𝑥𝑑 Cages between 1 and 2 have, on average, two 

female offspring; and those of age 2 have, on average, 

one female offspring. Let  𝑥1, 𝑥2, and 𝑥3 be the numbers 

of females in the first, second, and third age groups, 

respectively, at the present time, and let  𝑦1, 𝑦2and 𝑦3 be 

the numbers of females in the corresponding groups for 

the next year. The changes from this year to next year 

are depicted in Table1. 

 

Table 1 

Age in years Current year Next year 

0 − 1 𝑥1 𝑦1 

1 − 2 𝑥2 𝑦2 

2 − 3 𝑥3 𝑦3 

 

The vector 𝑥 = [

𝑥1
𝑥2
𝑥3
] is the population 

distribution for the female population of the colony in 

the present year. We can use the preceding information 

to predict the population distribution for the following 

year, which is given by the vector  𝑦 = [

𝑦1
𝑦2
𝑦3
]. 

Note that 𝑦1, the number of females under age 

1 in next year’s population, is simply equal to the 

number of female offspring born during the current year. 

Since there are currently 𝑥2 females of age 1 − 2, each 

of which has, on average, 2 female offspring, and 𝑥3 

females of age 2 − 3, each of which has, on average, 1 

female offspring, we have the following formula for 𝑦1: 

 

𝑦1 = 2𝑥2 + 𝑥3 

 

The number 𝑦2 is the total number of females in 

the second age group for next year. Because these 

females are in the first age group this year, and because 

only 40% of them will survive to the next year, we have 

that 𝑦2 = 0.4𝑥1. Similarly, 𝑦3 = 0.5𝑥2. Collecting these 

three equations, we have 

 

 𝑦1 =  2.0𝑥2 + 1.0𝑥3 

𝑦2 = 0.4𝑥1 

𝑦3 =  0.5𝑥2.  
 

These three equations can be represented by the 

single matrix equation 𝑦 = 𝐴𝑥, where 𝑥 and 𝑦 are the 

population distributions as previously defined and 𝐴 is 

the 3 × 3 matrix 
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𝐴 = [
0.0 2.0 1.0
0.4 0.0 0.0
0.0 0.5 0.0

]. 

For example, suppose that 𝑥 = [
1000
1000
1000

]; that is, 

there are currently 1000 females in each age group. Then 

𝑦 = 𝐴𝑥 = [
0.0 2.0 1.0
0.4 0.0 0.0
0.0 0.5 0.0

] [
1000
1000
1000

] = [
3000
400
500

]. 

So one year later there are 3000 females under 

1 year of age, 400 females who are between 1 and 2 

years old, and 500 females who are 2 years old. 

For each positive integer 𝑘, let 𝑝𝑘 denote the 

population distribution 𝑘 years after a given initial 

population distribution 𝑝0. In the preceding example, 

𝑝0 = 𝑥 = [
1000
1000
1000

] and       𝑝1 = 𝑦 = [
3000
400
500

]. 

Then, for any positive integer k, we have that 

𝑝𝑘 = 𝐴𝑝𝑘−1. Thus 𝑝𝑘 = 𝐴𝑝𝑘−1 = 𝐴
2𝑝𝑘−2 = ⋯ = 𝐴

𝑘𝑝0. 
In this way, we may predict population trends 

over the long term. For example, to predict the 

population distribution after 10 years, we compute 𝑝10 =
𝐴10𝑝0. Thus 

𝑝10 = 𝐴
10𝑝0 = [

1987
851
387

]. 

 

where each entry is rounded off to the nearest 

whole number. If we continue this process in increments 

of 10 years, we find that (rounding to whole numbers) 

𝑝20 = [
2043
819
408

]      and      𝑝30 = 𝑝40 = [
2045
818
409

]. 

It appears that the population stabilizes after 30 

years. In fact, for the vector       

𝑧 = (
2045
818
409

) 

we have that 𝐴𝑧 = 𝑧 precisely. Under this 

circumstance, the population distribution 𝑧 is stable; that 

is, it does not change from year to year. 

In general, whether or not the distribution of an 

animal population stabilizes for 

a colony depends on the survival and birth rates of the 

age groups.  

We can generalize this situation to an arbitrary 

colony of animals. Suppose that we divide the females of 

the colony into 𝑛 age groups, where 𝑥𝑖 is the number of 

members in the 𝑖 𝑡ℎ group. The duration of time in an 

individual age group need not be a year, but the various 

durations should be equal. Let 𝑥 = (

𝑥1
𝑥2
⋮
𝑥𝑛

) be the 

population distribution of the females of the colony, 𝑝𝑖  
be the portion of females in the 𝑖 𝑡ℎ group who survive 

to the (𝑖 + 1)𝑠𝑡 group, and 𝑏𝑖be the average number of 

female offspring of a member of the 𝑖 𝑡ℎ age group. If 

𝑦 = (

𝑦1
𝑦2
⋮
𝑦𝑛

) is the population for the next time period, 

then 

𝑦1 = 𝑏1𝑥1 + 𝑏2𝑥2 +⋯+ 𝑏𝑛𝑥𝑛 

𝑦2 = 𝑝1𝑥1                                       
                                                 ⋮  

 𝑦3 =                  𝑝2𝑥2.                     
                                           𝑦𝑛 =
                        𝑝𝑛−1𝑥𝑛−1.           
Therefore, for 

𝐴 =

(

 
 

𝑏1   𝑏2    ⋯             𝑏𝑛
𝑝1   0     ⋯                0
 0     𝑝2    ⋯                0 
⋮       ⋮                       ⋮
 0      0    ⋯    𝑝𝑛−1  0 )

 
 
, 

We have 

𝑦 = 𝐴𝑥. 
 

The matrix 𝐴 is called the Leslie matrix for the 

population. The name is due to 

P. H. Leslie, who introduced this matrix in the 1940s. So 

if 𝑥0 is the initial population distribution, then the 

distribution after 𝑘 time intervals is 𝑥𝑘 = 𝐴
𝑘𝑥0 [6]. We 

continue this discussion as movement of population. 

 

III. POPULATION MOVEMENT 
 

A subject of interest to demographers is the 

movement of- populations or groups  of  people from one 

region to another. We consider here a simple model of 

the changes  in the population of a certain city and its 

surrounding suburbs over a period of years. 

Fix an initial year, say 1990, and denote the 

populations of the city and suburbs  that year by 𝑟0 and 

𝑠0, respectively. Let 𝑥0, be the population vector 

𝑥0 = (
𝑟0
𝑠0
)  
City population. I990          
  subueban popuirtain 1990

 

 

For 1991 and subsequent years, denote the population of 

the city and suburbs by the vectors 

𝑥1 = (
𝑟1
𝑠1
) , 𝑥2 = (

𝑟2
𝑠2
) , 𝑥3 = (

𝑟3
𝑠3
) , … 

Our goal is to describe mathematically how these vectors 

might be related. Suppose demographic studies show 

that each year about 5% of the city's population moves to 

the suburbs (and 95% remain in the city), while 3% of 

the suburban population moves to the city (and 97% 

remain in the suburbs). See figure 1. 

 

 
Figure 1. Annual percentage migration between city 

and suburbs. 
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After one year, the original 𝑟0, persons in the 

city are now distributed between city and suburbs as 

(
0.95𝑟0
0.05𝑟0

)

= 𝑟0 (
0.95
0.05

)
Move to city          
  Remain in suburbs

                   (1) 

The 𝑠0 persons in the suburbs in 1990 are 

distributed one year later as 

𝑠0 (
0.05
0.97

)
Move to city          
  Remain in suburbs

                   (2) 

The vectors in (1) and (2) account for all of the 

population in 1991, Thus 

(
𝑟1
𝑠1
) = 𝑟0 (

0.95
0.05

) + 𝑠0 (
0.05
0.97

) = (
0.95 0.03
0.05 0.97

) (
𝑟0
𝑠0
) 

 

That is, 

𝑥1 = 𝑀𝑥0                                                (3) 
where 𝑀 is the migration matrix 

determined by the following table: 

Form 
               City  Suburbs     To 

                    (
0.95   0.03
0.05   0.97

)
   city          
   suburbs  

 

Equation (4) describes how the population changes from 

1990 to 199 1. If the migration percentages remain 

constant, then the change from 1991 to 1992 is given by 

𝑥2 = 𝑀𝑥1 

and similarly for 1992 to I993 and subsequent years. In 

general 

𝑥𝑘+1 = 𝑀𝑥𝑘     for 𝑘 = 0, 1, 2, …         (4) 
The sequence of vectors {𝑥0, 𝑥1, 𝑥2, … } 

describes the population of the city/suburban region over 

a period of years, and the change in the population from 

one year to the next is given by (4). Here we have an 

example. 

Example 1. Compute the population of the region just 

described for the years 1991 and 1992, given that the 

population in 1990 was 600,000 in the city and 300,000 

in the suburbs.  

Solution: The initial population in 1990 is 𝑥0 =

(
600000
400000

). For 1991,  

𝑥1 = (
0.95   0.03
0.05   0.97

) (
600000
400000

) = (
582000
418000

).  

For 1992, 

𝑥2 = 𝑀𝑥1 = (
0.95   0.03
0.05   0.97

) (
582000
418000

) =

(
565440
434560

) [2]. 

 

 
Figure 2. Traffic flow along one-way streets 

IV. ANALYSIS OF TRAFFIC FLOW 
 

Figure 1 represents the flow of traffic through a 

network of one-way streets, with arrows indicating the 

direction of traffic flow. The number on any street 

beyond an intersection is the portion of the traffic 

entering the street from that intersection. For example, 

30% of the traffic leaving intersection 𝑃1 goes to 𝑃4, and 

the other 70% goes to 𝑃2. Notice that all the traffic 

leaving 𝑃5 goes to 𝑃8. 

Suppose that on a particular day, 𝑥1 cars enter 

the network from the left of 𝑃1, and 𝑥2 cars enter from 

the left of 𝑃3. Let 𝑤1, 𝑤2, 𝑤3, and 𝑤4  represent the 

number of cars leaving the network along the exits to the 

right. We wish to determine the values of the 𝑤𝑖’s. At 

first glance, this problem seems overwhelming since 

there are so many routes for the traffic. However, if we 

decompose the problem into several simpler ones, we 

can first solve the simpler ones individually and then 

combine their solutions to obtain the values of the 𝑤𝑖’s. 

We begin with only the portion of the network 

involving intersections 𝑃1, 𝑃2, and 𝑃3. Let 𝑦1, 𝑦2, and 

𝑦3 each be the number of cars that exit along each of the 

three eastward routes, respectively. To find 𝑦1 , notice 

that 30% of all cars entering 𝑃1 continue on to 𝑃4. 

Therefore, 𝑦1 = 0.30𝑥1 = 0.30x1. Also, 0.7𝑥1 of the cars 

turn right at 𝑃1, and of these, 20% turn left at 𝑃2. 

Because these are the only cars to do so, it follows that 

𝑦2 = (0.2)(0.7)𝑥1 = 0.14𝑥1. Furthermore, since 80% of 

the cars entering 𝑃2 continue on to 𝑃3, the number of 

such cars is (0.8)(0.7)𝑥1 = 0.56𝑥1. Finally, all the cars 

entering 𝑃3 from the left use the street between 𝑃3 and 

𝑃6, so 𝑦3 = 0.56𝑥1 + 𝑥2. Summarizing, we have 

 

𝑦1 = 0.30𝑥1 

𝑦2 = 0.14𝑥1 

 𝑦3 = 0.56𝑥1 + 𝑥2. 
 

We can express this system of equations by the 

single matrix equation 𝑦 = 𝐴𝑥, where 

 

𝑦 = (

𝑦1
𝑦2
𝑦3
)        𝐴 = (

0.30    0
0. 14   0
0.56    1

)       and      𝑥 = (
𝑥1
𝑥2
). 

 

Now consider the next set of intersections 𝑃4, 

𝑃5, and 𝑃6. If we let 𝑧1, 𝑧2, and 𝑧3 represent the numbers 

of cars that exit from the right of 𝑃4, 𝑃5, and 𝑃6, 

respectively, then by a similar analysis, we have 

 

𝑧1 = 0.5𝑦1 

𝑧2 = 0.5𝑦1 + 𝑦2 + 0.6𝑦3 

𝑧3 =   0.5𝑦3 

 

or 𝑧 = 𝐵𝑦, where 
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𝑧 = (

𝑧1
𝑧2
𝑧3
)    and    𝐵 = (

0.5    0      0
0.5    1   0.6
   0    0   0.4

). 

Finally, if we set 

𝑤 = (

𝑤1
𝑤2
𝑤3
𝑤4

)    and    𝐶 = (

1    0.30     0
0    0.20     0
   0    0.35     0.7
   0    0.15     0.3

) 

then by a similar argument, we have 𝑤 = 𝐶𝑧. It follows 

that 

𝑤 = 𝐶𝑧 = 𝐶(𝐵𝑦) = (𝐶𝐵)𝐴𝑥 = (𝐶𝐵𝐴)𝑥. 
Let 𝑀 = 𝐶𝐵𝐴. Then 

 

𝑀 = (

1    0.30     0
0    0.20     0
   0    0.35     0.7
   0    0.15     0.3

)(

0.5    0      0
0.5    1   0.6
   0    0   0.4

)(

0.30    0
0. 14   0
0.56    1

)

= (

0.3378    0.18
0.1252    0.12
   0.3759    0.49   
   0.1611    0.21   

). 

 

For example, if 1000 cars enter the traffic 

pattern at 𝑃1 and 2000 enter at 𝑃3, then, for 𝑥 =

(
1000
2000

), we have 

𝑤 = 𝑀𝑥 = (

0.3378    0.18
0.1252    0.12
   0.3759    0.49   
   0.1611    0.21   

) (
1000
2000

)

= (

697.8
365.2

   1355.9   
   581.1   

). 

 

Naturally, the actual number of cars traveling 

on any path is a whole number, unlike the entries of 𝑤. 

Since these calculations are based on percentages, we 

cannot expect the answers to be exact. For example, 

approximately 698 cars exit the traffic pattern at 𝑃7, and 

365 cars exit the pattern at 𝑃8. 

We can apply the same analysis if the quantities 

studied represent rates of traffic flow—for example, the 

number of cars per hour—rather than the total number of 

cars [6]. 

 

V. Production Costs 
 

A company manufactures three products. Its 

production expenses are divided into three categories. In 

each category, an estimate is given for the cost of 

producing a single item of each product. An estimate is 

also made of the amount of each product to be produced 

per quarter. These estimates are given in Tables 2 and 3. 

At its stockholders’ meeting, the company would like to 

present a single table showing the total costs for each 

quarter in each of the three categories: raw materials, 

labor, and overhead.  

 

 

       Table 2: Production Costs per Item (dollars) 

Expenses 
Product 

A B C 

Raw materials 0.10 0.30 0.15 

Labor 0.30 0.40 0.25 

Overhead and miscellaneous 0.10 0.20 0.15 

      

Table 3: Amount Produced per Quarter 

Product 
Product 

Summer Fall Winter Spring 

A 4000        4500 4500 4000 

B 2000 2600 2400 2200 

C 5800 6200 6000 6000 

 

Solution. Let us consider the problem in terms of 

matrices. Each of the two tables can be represented by a 

matrix, namely, 

 

𝑀 = (
0.10 0.30 0.15
0.30 0.40 0.25
0.10 0.20 0.15

) 

And 

𝑃 = (
4000 4500 4500    4000
2000 2600 2400    2200
5800 6200 6000    6000

) 

 

If we form the product 𝑀𝑃, the first column of 

𝑀𝑃 will represent the costs for the summer quarter: 

Raw materials: (0.10)(4000) + (0.30)(2000) +
(0.15)(5800) = 1870 

Labor:                (0.30) (4000) + (0.40)(2000) +
(0.25) (5800) = 3450 

Overhead and miscellaneous: (0.10)(4000) +
(0.20)(2000) + (0.15)(5800) = 1670 

The costs for the fall quarter are given in the 

second column of 𝑀𝑃: 

Raw materials: (0.10)(4500) + (0.30)(2600) +
(0.15)(6200) = 2160 

Labor:                (0.30)(4500) + (0.40)(2600) +
(0.25)(6200) = 3940 

Overhead and 

miscellaneous: (0.10)(4500) + (0.20)(2600) +
(0.15)(6200) = 1900 

Columns 3 and 4 of MP represent the costs for 

the winter and spring quarters, respectively. Thus, we 

have 𝑀𝑃 = (
1870 2160 2070    1960
3450 3940 3810    3580
1670 1900 1830    1740

) 

The entries in row 1 of 𝑀𝑃 represent the total 

cost of raw materials for each of the four quarters. The 

entries in rows 2 and 3 represent the total cost for labor 

and overhead, respectively, for each of the four quarters. 

The yearly expenses in each category may be obtained 

by adding the entries in each row. The numbers in each 

of the columns may be added to obtain the total 
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production costs for each quarter. Table 4 summarizes 

the total production costs [9]. 

 

Table 4 

Expenses 
Product 

Summer Fall winter Spring Year 

Raw materials 1870 2160 2070 1960 8060 

Labor 3450 3940 3810 3580 14780 

Overhead and 

miscellaneous 
1670 1900 1830 1740 7140 

Total 
production 

cost 

6990 8000 7710 7280 29980 

 

VI. (𝟎, 𝟏) −MATRICES 
  

Matrices can be used to study certain 

relationships between objects. For example, suppose that 

there are five countries, each of which maintains 

diplomatic relations with some of the others. To organize 

these relationships, we use a 5 × 5 matrix 𝐴 defined as 

follows. For 1 ≤ 𝑖 ≤ 5, we let 𝑎𝑖𝑖 = 0, and for 𝑖 ≠ 𝑗,  
 

𝑎𝑖𝑖 = {
1   if country 𝑖 maintains diplomatic relations with country 𝑗
0   otherwise.                                                                                          

 

 

Note that all the entries of A are zeros and ones. 

Matrices whose only entries are zeros and ones are 

called (𝟎, 𝟏)-matrices, and they are worthy of study in 

their own right. For purposes of illustration, suppose that 

 

𝐴 =

(

 
 
0    0    1    1    0
0    0    0    1    1
1    0    0    0    1
1    1    0    0    0
0    1    1    0    0)

 
 
. 

 

In this case, 𝐴 = 𝐴𝑇; that is, 𝐴 is symmetric. 

The symmetry occurs here because the underlying 

relationship is symmetric. (That is, if country 𝑖 maintains 

diplomatic relations with country 𝑗, then also country 𝑗 
maintains diplomatic relations with country 𝑖.) Such 

symmetry is true of many relationships of interest. 

Figure 3 gives us a visual guide to the relationship, 

where country 𝑖 is shown to maintain diplomatic 

relations with country j if the dots representing the two 

countries are joined by a line segment. (The diagram in 

Figure 3 is called an undirected graph.)  

Let us consider the significance of an entry of 

the matrix 𝐵 = 𝐴2; for example,  

 

𝑏23 = 𝑎21𝑎13 + 𝑎22𝑎23 + 𝑎23𝑎33 + 𝑎24𝑎43 + 𝑎25𝑎53.                                                                
 

 
Figure 3. Diplomatic relations among countries 

 

A typical term on the right-side of the equation 

has the form 𝑎2𝑘𝑎𝑘3. This term is 1 if and only if both 

factors are 1-that is, if and only if country 2 maintains 

diplomatic relations with country 𝑘 and country 𝑘 

maintains diplomatic relations with country 3. Thus 𝑏23 

gives the number of countries that link country 2 and 

country 3. To see all of these entries, we compute 

 

𝐵 = 𝐴2 =

(

 
 
2    1    0    0    1
1    2    1    0    0
0    1    2    1    0
0    0    1    2    1
1    0    0    1    2)

 
 
. 

 

Since 𝑏23 = 1, there is exactly one country that 

links countries 2 and 3. A careful examination of the 

entries of 𝐴 reveals that 𝑎25 = 𝑎53 = 1, and hence it is 

country 5 that serves as the link. (Other deductions are 

left for the exercises.) We can visualize the (𝑖, 𝑗)-entry of 

𝐴2 by counting the number of ways to go from country 𝑖 
to country 𝑗 in Figure 2 that use two line segments. 

By looking at other powers of 𝐴, additional 

information may be obtained. For example, it can be 

shown that if 𝐴 is an 𝑛 × 𝑛 (0, 1)-matrix and the (𝑖, 𝑗)-
entry of 𝐴 + 𝐴2 +⋯+ 𝐴𝑛−1 is nonzero, then there is a 

sequence of countries beginning with country 𝑖, ending 

with country 𝑗 , and such that every pair of consecutive 

countries in the sequence maintains diplomatic relations. 

By means of such a sequence, countries 𝑖 and 𝑗 can 

communicate by passing a message only between 

countries that maintain diplomatic relations. Conversely, 

if the (𝑖, 𝑗)-entry of 𝐴 + 𝐴2 +⋯+ 𝐴𝑛−1 is zero, then 

such communication between countries 𝑖 and 𝑗 is 

impossible.  

Example 2. Consider a set of three countries, such that 

country 3 maintains diplomatic relations with both 

countries 1 and 2, and countries 1 and 2 do not maintain 

diplomatic relations with each other. These relationships 

can be described by the 3 × 3 (0, 1)-matrix 

𝐴 = (
0 0 1
0 0 1
1 1 0

). 
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In this case, we have 𝐴 + 𝐴2 = (
1 1 1
1 1 1
1 1 2

), and so 

countries 1 and 2 can communicate, even though they do 

not have diplomatic relations. Here the sequence linking 

them consists of countries 1, 3 and 2. 

A (0, 1)-matrix can also be used to resolve 

problems involving scheduling. Suppose, for example, 

that the administration of a small college with 𝑚 

students wants to plan the times for its 𝑛 courses. The 

goal of such planning is to avoid scheduling popular 

courses at the same time. To minimize the number of 

time conflicts, the students are surveyed. Each student is 

asked which courses he or she would like to take during 

the following semester. The results of this survey may be 

put in matrix form. 

Define the 𝑚 × 𝑛 matrix 𝐴 as follows: 

𝑎𝑖𝑖 = {
1 if student 𝑖 wants to take course 𝑗
0 otherwise.                                            

 

In this case, the matrix product 𝐴𝑇𝐴 provides 

important information regarding the scheduling of 

course times. We begin with an interpretation of the 

entries of this matrix. Let 𝐵 = 𝐴𝑇and 𝐶 = 𝐴𝑇𝐴 = 𝐵𝐴. 

Then, for example, 

𝑐12 = 𝑏11𝑎12 + 𝑏12𝑎22 +⋯+ 𝑏1𝑘𝑎𝑘2 +⋯+ 𝑏1𝑚𝑎𝑚2 

                             = 𝑎11𝑎12 + 𝑎21𝑎22 +⋯+ 𝑎𝑘1𝑎𝑘2 +
⋯+ 𝑎𝑚1𝑎𝑚2. 
 

A typical term on the right side of the equation 

has the form 𝑎𝑘1𝑎𝑘2. Now, 𝑎𝑘1𝑎𝑘2 = 1 if and only if 

𝑎𝑘1 = 1and 𝑎𝑘2 = 1; that is, student 𝑘 wants to take 

course 1 and course 2. So 𝑐12 represents the number of 

students who want to take both courses 1 and 2. In 

general, for 𝑖 ≠ 𝑗, 𝑐𝑖𝑗  is the number of students who want 

to take both course 𝑖 and course  . In addition, 𝑐𝑖𝑗  

represents the number of students who desire class 𝑖. For 

more clarity we have another example as follows:  

Example 3. Suppose that we have a group of 10 students 

and five courses. The results of the survey concerning 

course preferences are as follows: 

 

Course Number 

Student 1 2 3 4 5 

1 1 0 1 0 1 

2 0 0 0 1 1 

3 1 0 0 0 0 

4 0 1 1 0 1 

5 0 0 0 0 0 

6 1 1 0 0 0 

7 0 0 1 0 1 

8 0 1 0 1 0 

9 1 0 1 0 1 

10 0 0 0 1 0 

Let 𝐴 be the 10 × 5 matrix with entries from 

the previous table. Then 

𝐴𝑇𝐴 =

(

 
 
4    1    2    0    2
1    3    1    1    1
2    1    4    0   4
0    1    0    3    1
2    1    4    1    5)

 
 
. 

 

From this matrix, we see that there are four 

students who want both course 3 and course 5. All other 

pairs of courses are wanted by at most two students. 

Furthermore, we see that four students want course 1, 

three students desire course 2, and so on. Thus, the trace 

of 𝐴𝑇𝐴 equals the total demand for these five courses 

(counting students as often as the number of courses they 

wish to take) if the courses are offered at different times. 

Notice that although 𝐴 is not symmetric, the 

matrix 𝐴𝑇𝐴 is symmetric. Hence we may save 

computational effort by computing only one of the (𝑖, 𝑗)- 
and (𝑖, 𝑗)-entries. As a final comment, it should be 

pointed out that many of these facts about (0, 1)-
matrices can be adapted to apply to nonsymmetrical 

relationships [6]. Another important application of 

matrix multiplication is encoding and decoding 

messages, which will be describe as follows. 

 

VII. ENCODE AND DECODE 

MESSAGES BY MATRIX 

MULTIPLICATION 
 

Here we have fantastic use of matrix 

multiplication to encode and decode messages. To 

encode a message, choose an 𝑛 × 𝑛 invertible matrix 𝐴 

and multiply the uncoded row matrices (on the right) by 

𝐴 to obtain coded row matrices. Example 4 demonstrates 

this process. 

Example 4. For Encoding a Message. We use the 

following invertible matrix 𝐴 = (−
1 −2   2
1    1    3
1 −1 −4

) to 

encode the message MEET ME MONDAY. 

The coded row matrices by multiplying each of the 

uncoded row matrices we find that by the matrix, as 

follows:  
        [13     5       5]  [20        0     13]    [5     0    13]    [15    14     4 ]    [1       25       0] 
          M       E        E        T    ___   M          E  ___   M       O      N        D         A       Y   ____  

   

 

Note the use of a blank space to fill out the last 

uncoded row matrix. 

 

[13       5       5] (−
1 −2   2
1    1    3
1 −1 −4

) = [13  − 26     21] 

[20        0     13] (−
1 −2   2
1    1    3
1 −1 −4

) = [33  − 53  − 12] 

 [5       0       13] (−
1 −2   2
1    1    3
1 −1 −4

) = [18  − 23  − 42] 
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[15      14      4 ] (−
1 −2   2
1    1    3
1 −1 −4

) = [5   − 20        56] 

[1       25       0] (−
1 −2   2
1    1    3
1 −1 −4

) = [−24   23      77] 

 

The sequence of coded row matrices is 

 
[13 − 26    21][33 − 53 − 12][18 − 23 − 42][5  

− 20      56][−24    23     77]. 
 

Finally, removing the matrix notation produces 

the following cryptogram. 

 

13 − 26  21  33 − 53 − 12  18 − 23 − 42  5 
− 20  56 − 24  23  77. 

 

For those who do not know the encoding matrix 

𝐴, decoding the cryptogram found in Example 3 is 

difficult. But for an authorized receiver who knows the 

encoding matrix 𝐴, decoding is relatively simple. The 

receiver just needs to multiply the coded row matrices by 

𝐴−1 to retrieve the uncoded row matrices [7].  

 

VIII. CONCLUSION 
  

Linear Algebra is the most important part of the 

mathematics, which contain matrices and its 

multiplication. Matrix multiplication has some beautiful 

applications. So in this paper we worked on. First we 

introduced the matrix multiplication and their definition 

with some properties. In the second part of the research 

work, we have tried to introduce population change and 

population movement by matrix multiplication with 

examples. Then we described the analysis of traffic flow, 

which is very important in humane life. Another 

fantastic application of matrix multiplication is 

production cost and diplomatic relations among 

countries, these parts also clarified with some applied 

examples. As we know the coding theory is one of the 

important and useful part of the life, hence in this paper 

also we discussed in the form of matrices, that is 

encoding and decoding messages. 
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