Potential Phytochemicals and Pharmacological Aspect of *Ficus deltoidea* Plant

Sharbat Khan Nafees¹, Zahidullah Zaheen² and Mohammad Aziz Khan³

¹Department of Biology, Faculty of Education, Shaikh Zayed University, Khost AFGHANISTAN.
²Department of Biology, Faculty of Education, Shaikh Zayed University, Khost AFGHANISTAN.
³Department of Biology, Faculty of Education, Paktika University, AFGHANISTAN.

¹Corresponding Author: sbkhannafees@gmail.com

https://orcid.org/0009-0007-1169-7287

ABSTRACT

Ficus deltoidea is a potential plant used for several purposes. This plant traditionally used for various treatment in the different parts of the globe. *Ficus deltoidea* has diversified morphology and mostly found in south Asian countries. Due to its great potential, recently it is getting famous as more attention given in exploring herbs as an alternative for medicine. The active phytochemicals of *F. deltoidea* have been studied for antioxidant, anti-diabetic, anti-inflammatory, antinociceptive, anti-ulcerogenic and wound healing activities. This review article will focus on to elaborate the active phytochemicals and pharmacological properties of *F. deltoidea* plant.

Keywords - *Ficus deltoidea*, phytochemicals, pharmacological properties, medicinal value.

I. INTRODUCTION

Medicinal plants and herbs are used as a source of medicine amongst the different cultures from thousands of years ago. In recent years the utilization of medicinal plants is significantly increased due to its effectiveness. Traditional herbal medicine gives a great impact to the public health care and has increased the advancement of medicine around the globe (Wachtel-Galor and Benzie, 2011). The therapeutic efficiency of plants is because of their secondary metabolites termed as “phytochemical” such as phenols, flavonoids, alkaloids, terpenoids, saponin, steroids, glycosides, tannin and volatile oils. These compounds have pharmacologically active ingredients which play a crucial role in the development of new drugs (Ahmad Khan & Ahmad, 2019).

F. deltoidea plant is broadly distributed in South Asian countries (Farsi et al., 2014). This plant mostly found in tropical and subtropical areas. It belongs to the Moraceae family that consists of 40 genera and more than 1000 species. The plants of this family have many features like male or female small petalless flowers, opposite leaves and having milky latex (Jamal et al., 2017). The leaves of *F. deltoidea* varieties demonstrate heterophyllly and the subspecies are mostly identified through leaf structure (Fatihah et al., 2014). The aim of this review is to provide a basic information on phytochemical and pharmacological value of *F. deltoidea* plant.

1.1. Methodology

The pharmacological and phytochemical data of *F. deltoidea* plant was collected by different database search such as Google Scholar, Scopus, PubMed, Web of Science, and Science Direct. A total of 29 research paper
and review article was used to extract the relevant information and data regarding *F. deltoidea* plant.

1.2. Phytochemical Study of *F. deltoidea*

It has been confirmed that a large number of different plant phytochemicals have substantial biological activity and can be used as a therapeutic agent in multiple diseases (Süntar and Yakıncı, 2020). Several chemical compounds have been extracted and characterised from various parts of *F. deltoidea*, especially from leaves and fruits (Amiera et al., 2014). A Moretenol compound is extracted and recognised from the methanol extract of *F. deltoidea* leaves by utilising chromatography and nuclear magnetic resonance (NMR) techniques (Lip et al., 2009). The existence of flavonoids compounds (naringenin, quercetin, and rutin) was verified during the screening of *F. deltoidea* sample through HPLC and LS-MC based techniques. In the same context, research conducted by Omar et al. (2011) on flavonoid compounds of aqueous extract of *F. deltoidea* and characterised more than 25 compounds using HPLC-MS-based techniques. The antibacterial compound lupeol (C_{30}H_{48}O) was isolated from the leaf extract of *F. deltoidea* (Suryati et al., 2011). The two important bioflavonoids, namely vitexin and isovitexin was isolated from *F. deltoidea* leaves extract (Choo et al., 2012).

![Figure 1.1: Ficus deltoidea Plant](image)

II. PHARMACOLOGICAL EFFECTS OF *F. DELTOIDEA*

2.1. Anti-Diabetic Activity of *F. deltoidea*

Many scientific approaches and studies have been done and proven the anti-diabetic activity of the *F. deltoidea* plant (Adam et al., 2012). The oral administration of aqueous extract of *F. deltoidea* leaves efficiently reduced the total cholesterol and low density lipoprotein (LDL) in pre-diabetes (21-65 aged) adults (Kalman et al., 2013). A variety of phytochemicals called vitexin and isovitexin has been obtained from *F. deltoidea* leaf extract that restored the levels of blood glucose in streptozotocin-induced diabetic rats, and inhibited α-glucosidase activity *in vivo* (Choo et al., 2012). The hot aqueous extract of *F. deltoidea* leaves have been studied *in vitro* on the BRIN BD II cells. The findings of the study reveal that it can stimulates insulin secretion efficiently from the pancreatic beta-cells and increases glucose influx into adipocytes (Adam et al., 2012).

An *in vivo* study crude extract of *F. deltoidea* was administrated orally to euglycaemic and diabetic induced rats. The results of the study suggest that the crude extract predominantly exhibit a blood glucose-lowering effect in both euglycaemic and diabetic induced rats (Ilyanie et al., 2011). To the same extent a considerable amount of *F. deltoidea* methanolic extract and vitexin was administrated orally to streptozotocin-induced diabetic rodents for six weeks. The findings suggest that *F. deltoidea* and vitexin enhances the activity of antioxidant enzymes in the pancreas and promote the restoration of Langerhans islets (Nurdiana et al., 2017).

2.2. Anti-Inflammatory Activity of *F. deltoidea*

Natural and herbal remedies have been used to reduce the pain and inflammation for hundred and thousand years ago (Maroon et al., 2010). Few studies have argued that *F. deltoidea* extract has potent anti-inflammatory components. A comprehensive study was carried out on methanolic, and aqueous leaves extract of *F. deltoidea* three subspecies for anti-inflammatory activity assessment (Abdullah et al., 2009). The finding demonstrates anti-inflammatory activity in all three varieties of *F. deltoidea*. The methanolic extract shows the powerful anti-inflammatory activity of the TPA model (Abdullah et al., 2009; Abraham et al., 2018). In contrast, the aqueous extract of *F. deltoidea* leaves has been examined *in vivo* to assess anti-inflammatory activity in adult male Sprague–Dawley rat against acute, chronic, and pain associated inflammation. The carrageenan-induced paw oedema test, cotton pellet-induced Granuloma test, and formalin test was performed. The interpreted data demonstrates that the leaves extract of *F. deltoidea* reduces the inflammatory activity against acute and chronic inflammatory reactions and pain-associated inflammatory responses (Zakaria et al., 2012).

2.3. Antioxidant Activity of *F. deltoidea*

Antioxidants are molecules that prevent or reduce the oxidation process by scavenging free radicals (Lobo et al., 2010). Plant phenolic substances and their derivatives are a potent natural antioxidant and related to the antioxidant activity (Jeeva et al., 2015). The study was carried out on *F. deltoidea* leaves extract to determine the enzymatic and non-enzymatic antioxidant activities. The findings of the analysis explore the existence of non-enzymatic antioxidants like polyphenol, phenolic acid, and flavonoid and enzymatic antioxidants such as ascorbate, oxidase, peroxidase, catalase and, ascorbate peroxidase in *F. deltoidea* leaves extract (Yaacob and Baharuldin, 2018). The two subspecies of *F. deltoidea* were comparatively studied to determine the antioxidant activity. The study indicated that the aqueous extract of both subspecies exhibits high antioxidant activity as compared with the fractions (Misbah et al., 2013).
The aqueous extract of three varieties of *F. deltoidea* was investigated for antioxidant activity. The author figured out that high radical scavenging activity was found in *F. kunstleri* subspecies. Similarly, the subspecies *F. kunstleri* was enriched in total phenolic and flavonoid content, followed by *F. deltoidea* and *F. angustifolia* (Soib et al., 2015). The crude extract and ethyl acetate fraction of *F. deltoidea* leaves were examined for TPC, TFC, and antioxidant activity. The result suggests that *F. deltoidea* crude extract and fractions have a good source of antioxidant having a significant amount of phenolic and flavonoid content (Abrahim et al., 2018).

2.3. Wound-Healing Activity of *F. deltoidea*

The *in vivo* study has been conducted on a group of Sprague Drawly rats to determine the wound healing activity of aqueous extract of *F. deltoidea* leaves aqueous extract. Aseptically a uniform cut of 2 cm in diameter was introduced to all rodents on the upper backside of the neck and assessed for several days. The wound was dressed twice every day with a sandy layer of placebo containing 5% and 10% *F. deltoidea* aqueous extract. The findings revealed that wounds treated with aqueous extract of *F. deltoidea* show considerable signs of dermal healing as compared to wounds treated with sterile deionized water and blank placebo (Abdulla et al., 2010). The human fibroblast cells were treated with aqueous extract of *F. deltoidea* leaves via *in vitro* study. The outcome indicates that *F. deltoidea* leaves aqueous extract enhances the migration of fibroblast cells and played a crucial role in treating the damaged tissue (Mustaffa et al., 2015).

The *F. deltoidea* plant extract was examined for ulcer healing during *in vivo* study. The study was performed on ethanol-induced gastric ulcer rats. The histological observation reveals that the stomach of rats treated with *F. deltoidea* extract show reduced ulcer surface, inhibition of leukocyte infiltration and lack of oedema in the submucosal area. These findings suggest that the components of *F. deltoidea* has a cytoprotective effect and keep safe the gastric mucosa from damage (Fatimah et al., 2009). In the same way, Ahmad and Amin (2017), examined the anti-oral ulcer activity of *F. deltoidea* leaf extract on experimental rats. The result of the study demonstrates that *F. deltoidea* aqueous extract significantly enhance the reduction of ulcer size and promote the percentage of inhibitory region.

The above mention literature regarding the pharmaceutical activities of *F. deltoidea* extract shows that the corresponding plant has a plenty of potential and efficient phytochemicals which can be used as antioxidant, anti-inflammatory, anti-diabetic and anti-ulcerogenic agent. The upper mention studies demonstrated that the crude extract of this plant was used experimentally against different *in vivo* models and *in vitro* cell culture. Besides their promising affect as a pharmaceutical agent, still needs further studies to explore more to their phytochemicals and pharmaceutical activities.

III. CONCLUSION

Ficus deltoidea is a remarkable medicinal plant, traditionally used for several purposes effectively. The previous studies proven the presence of numerous potent phytochemicals such as phenolic, flavonoids and alkaloids to its pharmacological properties. Further studies need to identify the potent bioactive compounds of *F. deltoidea* by utilizing advanced technology such as high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR), and Fourier transform infrared spectroscopy (FTIR).

ACKNOWLEDGMENTS

The authors would like to express special thanks to the Shaikh Zayed University, and Department of Biology for their support.

REFERENCES

blocks hepatic glucose production by regulating the expression of glucosemetabolic genes in streptozitocin-induced diabetic rats. BMC complementary and alternative medicine, 14(1), 1-13.

