www.jrasb.com

Herbs Having Analgesic Activity

Pallabi Saha¹, Debajyoti Biswas², Prodip Roy³, Mrityunjoy Majumdar⁴, Sourav Roy⁵, Ruchismita Manna⁶, Arpan Chanda⁷, Suranjanaa Das⁸, Mainak Mukherjee⁹, Shaon Dey¹⁰ and Debapriya Das¹¹ ¹Student, Department of Pharmacology, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia, West Bengal-741222, INDIA. ²Student, Department of Pharmacology, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia, West Bengal-741222, INDIA. ³Assistant Professor, Department of Pharmacology, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia, West Bengal-741222, INDIA. ⁴Professor (H.O.D), Department of Pharmacology, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia, West Bengal-741222, INDIA. ⁵Assistant Professor, Department of Pharmacology, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia, West Bengal-741222, INDIA. ⁶Student, Department of Pharmacology, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia, West Bengal-741222, INDIA. ⁷Student, Department of Pharmacology, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia, West Bengal-741222, INDIA. ⁸Student, Department of Pharmacology, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia, West Bengal-741222, INDIA. ⁹Student, Department of Pharmacology, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia, West Bengal-741222, INDIA. ¹⁰Student, Department of Pharmacology, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia, West Bengal-741222, INDIA. ¹¹Student, Department of Pharmacology, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia, West Bengal-741222, INDIA.

¹Corresponding Author: pallabi11032001@gmail.com

ORCID

https://orcid.org/0009-0000-2304-3757

www.jrasb.com || Vol. 2 No. 5 (2023): October Issue

Received: 19-09-2023

Revised: 23-09-2023

Accepted: 26-09-2023

ABSTRACT

Healthcare maintains a high priority on pain management, and research to develop safer and more potent analgesics is ongoing. Natural goods, especially plants, have recently attracted renewed interest as potential sources of analgesic medications. In this study, various techniques are used to measure pain. The rich source of analgesics found in medicinal plants includes Moringa oleifera, Aloe barbadensis, Curcuma longa, Eugenia caryophyllata, Adhatoda vasica, Mentha piperita, Ocimum sanctum, Zingiber officinale, Lavandula angustifolia, Epilobium angustifolium, Dialium guineense, Sida acuta, Stylosanthes fruticose, Bougainvilla spectabilis, Ficus glomerata, Polyalithia longifolia, Calotropis gigantea, Tinospora cordifolia, Ageratina glabrata, Mangifera indica, Peperomia pellucida, Jatropha gossypifolia, Leonotis leonurus, Mimosa rubicaulis, Cussonia paniculate, Biebersteinia multifida, Alternanthera sessislis, Mentha arvensis, Oroxylum indicum, Tamarindus indica, Cucurbita maxima, Cucumis sativus, Emblica officinalis, Angiopteris evecta, Parastrephia lephidophylla, Peperomia pellucida, Scoparia dulcis, Ficus religiosa, Dalbergia sissoo, Grangea maderaspatana, Nothospondias staudtii, Rhodiola rosea, Juniperus communis, Erythrina

www.jrasb.com

https://doi.org/10.55544/jrasb.2.5.1

variegate etc. The results reported in this review paper represent scientific knowledge that may be applied in the future to isolate potentially active molecules from some of these medicinal plants.

Keywords- Algesia, Analgesic, Herbal medicine..

I. **INTRODUCTION**

Algesia (Pain):

Pain is characterized as an acute somatic discomfort, a sign of a bodily injury or disease, and sometimes emotional distress. A vital part of the body's defense mechanisms, pain serves as a quick warning signal that instructs the motor neurons in the central nervous system to prevent physical harm.

There are two main different categories of pain: (a) Acute pain (b) Chronic pain.

(a) Acute pain: The body warns of current sickness or tissue damage with acute discomfort. It often comes on quickly and sharply and is followed by aching discomfort. It is either temporary pain or pain with recognizable origins.

(b) *Chronic pain:* Chronic pain can be described as pain that persists significantly longer than would be the case

with a specific injury. Acute pain is usually easier to cure than chronic pain, which can be continuous or intermittent. Additionally, different types of pain can be categorized according to their origin and associated paindetecting neurons, such as cutaneous, somatic, visceral, and neuropathic pain.^[1]

There are many different types of pain, including neuropathic, visceral, inflammatory, and acute. In addition to reflecting the influence of numerous psychological factors including attention, worry, stress, suggestion, or prior experiences, it may also be significantly influenced by genetics. It is not just the outcome of tissue damage. The majority of diseases seen in modern medicine are accompanied by pain, and 25% of Americans, for instance, report having everyday discomfort. The statistics were on pain's side, making it a global public health issue and the main cause of disability worldwide.^[2]

	From irritation the receptors of integuments, muscles, joints and internal organs
Receptor pain	No changes in the nervous system
	Skin, osteoarticular, muscular, and organ pain
	Nerve or central nervous system damage
Non-receptor pain	Damaged nervous system
	Neuropathic pain – from the nerves, central pain – from the spinal cord

Table 1. Characteristics of pain^[3]

Analgesics:

Greek words an- ("without") and algos- ("pain") give us the word analgesic. Analgesics are medications that act to relieve pain without making a person unconscious. On the peripheral and central neural systems, analgesic medications act on it and produce analgesic effects.^[1]

Three categories can be used to classify analgesics:

- (a) Opioid/narcotic analgesics.
- (b) Non-opioid/non-narcotic analgesics.
- (c) Adjuvent analgesics.^[4]

There are three primary factors that regulate the analgesia system:

- The periaqueductal grey matter (in the midbrain) •
- The nucleus raphe magnus (in the medulla) •

The dorsal horns of the spinal cord contain paininhibitory neurons that block pain-transmitting neurons that are also found there.^[1]

II. **METHODS OF TESTING PAIN IN** ANIMALS:^[5]

Hot plate test:

To reduce nervous pressure, mice are placed individually on plates three to four times during intervals of three to five minutes in this technique. The interval between placing the mice on the plate and when they begin to lick it is referred to as the threshold, and the animal's latency in licking or kicking at various intervals is noted. Each mouse is placed on a plate 4-5 times over the course of five-minute intervals to obtain an average that can be calculated more precisely. Animal tissue damage cutoff time is taken into consideration. In this test, pain control mechanisms are presented. For substances that resemble opioids, the hot plate test is a selective test. An extra-spinal pain model is used in this exam. This test's ability to produce automatic defensive behaviors is its key feature.

www.jrasb.com

Writhing test:

Acetic acid solution is intraperitoneally injected into mice as part of this test. The number of writhing individuals is determined during 30 minutes following acetic acid injection. If an animal writhes, it should include abdominal muscle contractions followed by the opening of the back feet or stretching of the entire body. The sensitivity of pain receptors to substances like prostaglandins is a prerequisite for abdominal muscle contractions.

Damage to the tissue results in the release of chemicals including prostaglandins, bradykinin, serotonin, substance P, histamine, and PGF2, which express inflammatory pain by increasing capillary permeability. This test can be used to measure the analgesic activity of opioid agonists and non-steroidal anti-inflammatory medications.

Tail flick test:

The mouse has been placed in the restrainer device in the light tail flick such that the animal's tail is outside the chamber. The lamp light is employed in this technique to inflict agony. The animal flicks its tail as a result of heat-induced pain after being exposed to a light beam for a while. In the beginning, animal tolerance is assessed, and the tolerance period is regarded as control latency. The time to get maximum analgesic response is then estimated using the formula below at various intervals up to 120 minutes following medication administration.

 $Maximum \ analgesic \ response = \frac{Test \ latency - Control \ latency}{Cut \ off \ time - Control \ latency} \times 100$

Cut off time is the greatest tolerance period for avoiding injury to an animal's tail.

Tail immersion:

To evaluate acute pain, a hot water tail immersion test or short tail immersion is utilised. The mouse is first placed in a restrainer, then after 20 minutes, its tail is submerged in a hot water bath. Acute pain threshold is defined as the amount of time a mouse can tolerate its tail being submerged in water before it pulls it out. Each mouse's mean threshold is determined by immersing its tail in water five times at intervals of seven minutes. After determining the average threshold for each mouse, the percentage of analgesia index is derived using the formula below:

Analgesia index = $\frac{\text{Drug latency} - \text{Control latency}}{\text{Cut off time - Control latency}} \times 100$

Formalin test:

In this technique, an animal is placed in a glass container, and the animal's reactions are then observed. Underneath the container, a mirror is placed and tilted at a 45° angle to ensure clear visibility. To conduct the test,

ISSN: 2583-4053 Volume-2 Issue-5 || October 2023 || PP. 1-11

https://doi.org/10.55544/jrasb.2.5.1

 $20 \ \mu L$ of 2.5% formalin is injected subcutaneously into the paw's surface. Following that, the lengths of time spent licking or biting the formalin-injected paw during two delay and quick stages are timed. Typically, the acute phase occurs in the first 0–5 minutes, while the chronic phase occurs in the last 5–60 minutes.

III. HERBAL REMEDIS AND ANALGESICS ACTVITY

Since the earliest days of time, people have looked for medicines for their diseases in nature.^[6,7] Plants include a large number of biologically active substances that have been utilized for countless years to treat a wide range of human disorders. Today, a variety of traditional medicines are widely accessible and are said to have higher cultural acceptance, better compatibility with the human body, fewer side effects, and greater efficacy. Around 80% of the population receives their primary care from traditional medicine, according to estimates from the World Health Organisation. Since medicinal plants are the "backbone" of traditional medicine, more than 3.3 billion people in less developed nations regularly utilize herbal remedies. ^[8,9,10,11]

Using medicinal plants as an acceptable source of innovative therapy has become more popular recently due to the various adverse effects of synthetic medications. One of the most significant foes in modern medicine, pain has a high influence on living quality and has significant economic implications. According to estimates, 80% of people worldwide utilize plants as analgesics or antinociceptive medications in traditional therapy. With the vast variety of medicinal plant resources available, research into new analgesic combinations is expanding. This is due to the fact that such information offers assurances for the discovery of novel therapeutic medicines that can prevent, reduce, or relieve pain. Much older than the present medical sciences practiced in developing nations is the folk medical practice of using herbs as analgesics. [2]

IV. HERBS HAVING ANALGESIC ACTIVITY

Due to the potential adverse effects and low efficacy of synthetic and chemical medications, the use of alternative drugs, particularly herbal painkillers, is developing.^[5] Different pain tests, such as the writhing test, light tail flick test, tail immersion test, hot-plate test, and formalin test, have been used to study the effects of herbal extracts. ^[2] There are some of the plants listed in Table-2. which in conventional medicine have analgesic properties. Among the plants whose analgesic properties have been established.

ISSN: 2583-4053

www.jrasb.com

SI.	Plant name	Family	Using	of plants having an Type of	Animal	Methods	Effective	Result
51. No.	i lant haffie	r annry	osing part	extraction	used	wiethous	dose	ACSUIL
						D 1'		T. 1.11.
1.	<i>Moringa</i> <i>oleifera</i> (Drum stick)	Moringaceae	Leaf	Non-polar and polar extracts	Male and female Wistar rats	Formalin test	30- 300 mg/kg	Its capability to reduce pain. ^[12]
			Seed	95% alcohol	Wister male albino rats	Hot plate method & tail Immersion Method	30 mg/kg	Alcoholic extract displayed strong analgesic effects. ^[13]
2.	Aloe barbadensis (Aloe vera)	Asphodelaceae	Leaf	Aqueous extract	Male Wistar rats	Hot plate method	300 mg/kg	It has analgesic efficacy. ^[14]
3.	<i>Curcuma</i> <i>longa</i> (Turmeric)	Zingiberceae	Rhizome	Aqueous & alcoholic extract	Wistar rats	Tail Immersion Method		It has an analgesic effect. ^[15]
4.	Eugenia caryophyllata (Clove)	Myrtaceae	Bud	Aqueous and ethanolic extracts	Mice	Hot plate method	50, 100, and 200 mg/kg	It was proven that clove extract in aqueous form but not in ethanol, has analgesic properties. ^[16]
5.	Adhatoda vasica (Vasaka)	Acanthaceae	Leaves	Methanolic extract	Wistar albino rats	Hot plate method & tail immersion method	200, 400 and 600 mg/kg	It significantly inhibited the pain. ^[17]
6.	<i>Mentha</i> piperita (Pudina)	Lamiaceae	Leaves	Methanolic extract	Wistar albino rats	Hot plate method & tail immersion method	200, 400 and 600 mg/kg	It significantly inhibited the pain. ^[17]
7.	Ocimum sanctum (Tulsi)	Labiatae	Seed	Petroleum ether	Albino rats, albino mice	Tail flick method, tail clip method, and tail immersion method	1.0, 2.0 ml/kg	The analgesic effects are proven. ^[18]
8.	Zingiber officinale (Ginger)	Zingiberaceae	Rhizome	Ethanol extract	Male and female mice, Wistar rats	Hot-plate test method & acetic acid test method	50, 100, 200, 400, 800 mg/kg	It has an analgesic effect. ^[19]
9.	Lavandula angustifolia (Lavender)	Lamiaceae	Leaves	Hydro-alcoholic extract	Male swiss mice	Formalin test and acetic acid- induced writhing test	100, 200 mg/kg	It has analgesic activity. ^[20]

ISSN: 2583-4053

www.jrasb.com

Volume-2 Issue-5 || October 2023 || PP. 1-11

10.	<i>Epilobium</i> <i>angustifolium</i> (Alpine	Onagraceae		Ethanolic tincture	Swiss male mice	Hot plate test and the	0, 47.5, 95, 190, and 380 mg/kg	The herb shows strong analgesic
	willowherb)					writhing test		properties.[21]
11.	Dialium guineense (Black velvet tamarind)	Fabaceae	Stem bark	80% methanol	Albino Wistar mice	Tail immersion test and hot plate method	250, 500, 1000 mg/kg	It has analgesic Activity. ^[22]
12.	Sida acuta (Common wireweed)	Malvaceae	Whole plant	Ethanol	Wistar albino rats/ swiss albino mice	Hot plate method & tail immersion method	100, 300 and 500 mg/kg	Analgesic activity was observed. ^[23]
13.	Stylosanthes fruticosa	Papilonaceae	Whole plant	Ethanol	Wistar albino rats/ swiss albino mice	Hot plate method & tail immersion method	100, 300 and 500 mg/kg	Analgesic activity was observed. ^[23]
14.	Bougainvilla spectabilis	Nyctoginaceae	Leaves	Ethanol	Wistar albino rats/ swiss albino mice	Hot plate method & tail immersion method	100, 300 and 500 mg/kg	Analgesic activity was observed. ^[23]
15.	Ficus glomerata	Moraceae	Bark, leaves	Ethanol	Wistar albino rats/ swiss albino mice	Hot plate method & tail immersion method	100, 300 and 500 mg/kg	Analgesic activity was observed. ^[23]
16.	Polyalithia longifolia	Annonaceae	Leaves	Ethanol	Wistar albino rats/ swiss albino mice	Hot plate method & tail immersion method	100, 300 and 500 mg/kg	Analgesic activity was observed. ^[23]
17.	Calotropis gigantea	Asclepiadaceae	Flowers	Alcoholic extract	Swiss mice	Eddy's hot plate method and acetic acid induced writhing	250 and 500 mg/kg	The plant is used as a potential analgesic. ^[24]
18.	<i>Tinospora</i> <i>cordifolia</i> (Guduchi)	Menispermaceae	Stem and aerial parts	Aqueous extract	Albino rats	Hot plate and abdominal writhing method	300 mg/kg	The plant extract showed analgesic activity. ^[25]
19.	Ageratina glabrata (Kunth)	Asteraceae	Leaves	Dichloromethane extract	Female Sprague Dawley rats	Hot plate test	100 and 150 mg/kg	In animal studies, the plant has analgesic properties tha are mediated

Volume-2 Issue-5 || October 2023 || PP. 1-11

www.jrasb.com

								by COX-2 enzyme inhibition. ^[26]
20.	Mangifera indica (Mango)	Anacardiaceae	Leaves	Aqueous extract	Albino rats	Hot plate method and acetic acid induced writhing	200 and 400 mg/kg	Leaves extract in an aqueous form significantly reduces pain. ^[27]
21.	Peperomia pellucida	Piperaceae	Aerial part	Aqueous extract	Rats and mice	Abdominal writhes and hot plate method	200 and 400 mg/kg	The plant showed analgesic activity. ^[28]
22.	Jatropha gossypifolia	Euphorbiaceae	Aerial part	Methanolic & petroleum ether extract	Albino mice	Eddy's hot plate method & tail flick method	100 and 200 mg/kg	It has significant analgesic activity. ^[29]
23.	Leonotis leonurus	Lamiaceae	Leaves	Aqueous extract	Male Wister rat	Acetic acid- induced writhing test	50, 100, 200 mg/kg	It has a significant analgesic effect. ^[30]
24.	Mimosa rubicaulis	Fabaceae	Stem	Ethanol	Swiss albino rat	Hot plate method & tail immersion method	100, 250 mg/kg	It has analgesic activity. ^[31]
25.	Cussonia paniculata	Araliaceae	Stem bark	Aqueous extract	Male Wistar rat	Formalin test	50, 100 and 200 mg/kg	It acts as an analgesic. ^[32]
26.	Biebersteinia multifida	Geraniaceae	Root	Ethanol	Male Albino Wistar rat	Formalin test	50 mg/kg	It has analgesic effects. ^[33]
27.	Alternanthera sessislis (Chanchi shak)	Amaranthaceae	Aerial parts	Methanolic extract	Swiss albino mice	Abdominal writhing test	50, 100, 200 and 400 mg/kg	It is used to alleviate pain. ^[34]
28.	<i>Mentha</i> arvensis (wild mint)	Lamiaceae	Whole plant	Ethanolic extract	Swiss albino mice	Acetic acid induced writhing method	250 and 500 mg/kg	The plant is used as an analgesic. ^[35]
29.	Oroxylum indicum (Indian trumpet tree)	Bignoniaceae	Bark	Ethanol	Swiss albino mice	Hot plate, acetic acid- induced writhing and formalin.	250 and 500 mg/kg	It has analgesic activity. ^[36]
30.	<i>Tamarindus</i> <i>indica</i> (Tamarind)	Fabaceae	Stem bark	Hexane, ethyl acetate, and methanol	Wistar rats	Writhing test	200 mg/kg	It is an indication of potent anti- nociceptive activity. ^[37]

www.jrasb.com

Volume-2 Issue-5 || October 2023 || PP. 1-11

https://doi.org/10.55544/jrasb.2.5.1

-	•	1		1	T			
			Seeds	Petroleum Ether fraction and Ethyl acetate	Wistar rats	Tail immersion method	50 and 100 mg/kg	Increased latency to tail flick in this
			Roots	Aqueous extract	Wistar rats	Hot plate method and acetic acid- induced writhing test	300 and 600 mg/kg	method. ^[37] It enhanced pain inhibition. ^[37]
			Leaves	Ethanolic extract	Swiss albino mice	Tail immersion	400 mg/kg	Enhanced analgesic activity. ^[37]
31.	Cucurbita maxima	Cucurbitaceae	Seeds	Ethanol	Mice	Hot plate method & Tail flick method	50, 100, and 200 mg/kg	It has analgesic properties. ^[38]
32.	Cucumis sativus (Cucumber)	Cucurbitaceae	Seeds	Ethanol	Mice	Hot plate method & Tail flick method	50, 100, and 200 mg/kg	It has analgesic properties. ^[38]
33.	Emblica officinalis	Euphorbiaceae	Leaves	Ethanol and aqueous extracts	Swiss Albino mice	Acetic acid- induced writhing & Tail- immersion test	500 mg/kg	It has a significant analgesic effect. ^[39]
34.	Angiopteris evecta (Giant Fern)	Marattiaceae	Leaves	Methanol	Swiss albino mice	Abdominal writhing test	50, 100, 200 and 400 mg/kg	It is used for alleviating pain. ^[40]
35.	Parastrephia lephidophylla	Asteraceae	Aerial parts	n-hexane, CHCl3 and EtOAc extracts	Rats	Hot plate test	5, 20 mg/kg	It has analgesic activity. ^[41]
36.	Peperomia pellucida (shiny bush or silver bush)	Piperaceae	Whole plant	Ethyl acetate extract	Male Swiss albino mice	Acetic acid- induced Writhing	300 mg/kg	It has analgesic activity. ^[42]
37.	Scoparia dulcis (Sweet Broomweed)	Scrophulariacae	Whole herb	Ethanol	Swiss- albino mice	Hot plate method & acetic acid induced writhing method	100, 200 mg/kg	It has central and peripheral analgesic properties. ^[43]
38.	Ficus racemose (Jagyadumur)	Moraceae	Fruits	Ethanol	Swiss- albino mice	Hot plate method & acetic acid induced writhing method	100, 200 mg/kg	It has central and peripheral analgesic properties. ^[43]
39.	Eremostachys laciniata	Lamiaceae	Rhizomes	n-hexane, dichloromethane and methanol	Swiss Albino mice	Hot-plate test	0.5, 1 and 2.5 mg / kg	Analgesic activity was present. ^[44]
40.	Phlogacanthus thyrsiflorus (Lal basak)	Acanthaceae	Leaves	Ethanol extract	Albino rats	Tail flick method & glacial acetic	500 mg/kg	It has significant central and peripheral

This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

www.jrasb.com

Volume-2 Issue-5 || October 2023 || PP. 1-11

_								
						acid- induced writhing test		analgesic activities. ^[45]
41.	<i>Kigelia pinnata</i> (Sausage tree)	Bignoniaceae	Flowers	Methanolic extract	Albino Wistar rats	Acetic acid- induced writhing, hot plate method & formalin- induced paw licking	100,200 and 400 mg/kg	It has analgesic activity. ^[46]
42.	Molineria capitulata	Hypoxidaceae	Leaves	Methanolic extract	Swiss Albino mice	Acetic acid- induced Writhing & Formalin- Induced Writhing	200 and 400 mg/kg	This plant showed analgesic activity. ^[47]
43.	Manihot esculenta	Euphorbiaceae	Leaves	Ethanolic extract	Mice	Acetic acid- induced Writhing	12.8, 25.6, 51.3 and 102.6 mg/kg	It has an analgesic effect. ^[48]
44.	Ficus religiosa (Peepal)	Moraceae	Leaves and bark	Ethanolic extract	Swiss albino mice	Acetic acid- induced writing response & Eddy's hot plate method	400 mg/kg	It has both central and peripheral analgesic properties. ^[49]
45.	Dalbergia sissoo (Shisham or Sisam)	Fabaceae	Leaves	Ethanolic extract	Swiss mice and Wistar rats	Acetic acid- induced writing test	100, 300 and 1000 mg/kg	Moderate analgesic activities were present in this plant. ^[50]
46.	Grangea maderaspatana	Asteraceae	Whole plant	Methanol extract		Acetic acid- induced writing test	1 and 3 g/kg	The plant is used as an analgesic. ^[51]
47.	Nothospondias staudtii	Simaroubaceae	Leaves	Water, methanol and chloroform extract	Adult male and female Swiss mice and albino rats	Tail immersion and acetic acid- induced writing	100mg/kg	It has analgesic effect. ^[52]
48.	Rhodiola rosea (golden root or roseroot)	Crassulaceae	Rhizomes	Methanol	Male Wistar rats and male	Tail immersion and acetic acid-	50 and 200 mg/kg	Analgesic activity present. ^[53]

www.jrasb.com

Volume-2 Issue-5 || October 2023 || PP. 1-11

https://doi.org/10.55544/jrasb.2.5.1

					Swiss Albino mice	induced writing		
49.	Juniperus communis	Cupressaceae	Leaves	Methanolic extract	Swiss Albino mice	Acetic acid- induced writhing test, formalin- induced pain and tail flick test	100 and 200mg/kg	Analgesic activity present. ^[54]
50.	Erythrina variegate (Mandar)	Papilionaceae	Leaves	Methanolic extract	Swiss albino mice	Acetic acid- induced writhing and tail- flick model	500 mg/kg	It has true analgesic Potential. ^[55]

V. CONCLUSION

Currently used analgesic medications are either narcotics or non-narcotics with known harmful and adverse effects. Making use of new synthetic chemicals in this area is an expensive venture that could also provide adverse effects issues. On the other hand, numerous medications with a botanical origin have been utilized and are still being used successfully nowadays without any negative side effects. Therefore, studies investigating the clinical effectiveness, safety, and reasonable dosages of extracts and active substances for the treatment of pain should be prioritized in the future. The present paper provides an effective approach for finding more novel chemicals from multiple medicinal plants that may be beneficial in treating pain.

ACKNOWLEDGEMENT

We sincerely thank Dr. Arnab Samanta, the principal of the Netaji Subhas Chandra Bose Institute of Pharmacy. For his cooperation and providing of all required resources. We also want to express our gratitude to our family and friends for their time, patience, and support.

REFERENCES

[1] Kumar M, Shete A, Akbar Z. A review on analgesic: from natural sources. Int J Pharm Biol Arch. 2010;1:95-100.

[2] Uritu CM, Mihai CT, Stanciu GD, Dodi G, Alexa-Stratulat T, Luca A, Leon-Constantin MM, Stefanescu R, Bild V, Melnic S, Tamba BI. Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Research and Management. 2018 Oct;2018. [3] Świeboda P, Filip R, Prystupa A, Drozd M. Assessment of pain: types, mechanism and treatment. Pain. 2013;2(7).

[4] Tripathi, K.D. (2019) Essentials of Medical Pharmacology. New Delhi: Jaypee Brothers Medical Publishers.

[5] Bahmani M, Shirzad H, Majlesi M, Shahinfard N, Rafieian-Kopaei M. A review study on analgesic applications of Iranian medicinal plants. Asian Pacific journal of tropical medicine. 2014 Sep 1;7:S43-53.

[6] Pre-clinical evaluation of Hydro-alcoholic extract of marsilea quadrifolia leaves for anthelmintic activity. International Journal of Biology, Pharmacy and Allied Sciences. 2023;12(6 (SPECIAL ISSUE)). doi:10.31032/ijbpas/2023/12.6.1063

[7] Das H, Majumdar M, Roy S, Roy P, Singh S, Mondal S, Das A. Preclinical Evaluation of hydroalcoholic extract of Moringa oleifera leaves for its Cardiotropic activity on albino Wistar rat. Research Journal of Pharmacy and Technology. 2023 Jul 24;16(7):3417-21.

[8] Saha A, Chatterjee A, Singh S, Ghosh J, Majumdar M, Roy S, Roy P. Herbal Agents Having Abortive Activity. Journal for Research in Applied Sciences and Biotechnology. 2022 Aug 31;1(3):204-15.

[9] Samadder SS, Singh S, Saha A, Chatterjee A, Majumdar M, Roy S, Roy P. Preclinical Evaluation of Tropic Activity on Isolated Frog Heart by Using Volatile Oil of Nigella sativa Seeds. Journal for Research in Applied Sciences and Biotechnology. 2022 Oct 31;1(4):1-4.

[10] Roy P, Pramanick K, Das A, Majumdar M, Roy A, Sarkar U. Review of Some Herbal Agents Having Antiviral Activity. International Journal of Current Science Research and Review.2022;5(3):695-706

[11] Chattopadhyay S, Roy P, Mandal D. A Review on Cucumis sativus L. and its Anti-Ulcer Activity. Journal

for Research in Applied Sciences and Biotechnology.

2023 Mar 3;2(1):201-203.
[12] Martínez-González CL, Martínez L, Martínez-Ortiz EJ, González-Trujano ME, Déciga-Campos M, Ventura-Martínez R, Díaz-Reval I. Moringa oleifera, a species with potential analgesic and anti-inflammatory activities. Biomedicine & Pharmacotherapy. 2017 Mar 1;87:482-8.
[13] Sutar NG, Bonde CG, Patil VV, Narkhede SB, Patil AP, Kakade RT. Analgesic activity of seeds of Moringa oleifera Lam. International Journal of Green Pharmacy (IJGP). 2008;2(2).

[14] Ghosh AK, Banerjee M, Mandal TK, Mishra A, Bhowmik MK. A study on analgesic efficacy and adverse effects of Aloe vera in Wistar rats. Pharmacologyonline. 2011;1:1098-108.

[15] Neha S, Ranvir GD, Jangade CR. Analgesic and antipyretic activities of Curcuma longa rhizome extracts in Wister Rats. Veterinary world. 2009 Aug 1;2(8).

[16] Asl MK, Nazariborun A, Hosseini M. Analgesic effect of the aqueous and ethanolic extracts of clove. Avicenna journal of phytomedicine. 2013;3(2):186.

[17] Belemkar S, Thakre SA, Pata MK. Evaluation of anti-inflammatory and analgesic activities of methanolic extract of Adhatoda vasica Nees and Mentha piperita Linn. Inventi Rapid Ethnopharmacol. 2013 Apr 1;2:1-6.

[18] Singh S, Majumdar DK. Analgesic activity of Ocimum sanctum and its possible mechanism of action. International journal of Pharmacognosy. 1995 Jan 1;33(3):188-92.

[19] Ojewole JA. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2006 Sep;20(9):764-72.

[20] Hajhashemi V, Ghannadi A, Sharif B. Antiinflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. Journal of ethnopharmacology. 2003 Nov 1;89(1):67-71.

[21] Tita B, Abdel-Haq H, Vitalone A, Mazzanti G, Saso L. Analgesic properties of Epilobium angustifolium, evaluated by the hot plate test and the writhing test. Il Farmaco. 2001 Jul 1;56(5-7):341-3.

[22] Ezeja MI, Omeh YS, Ezeigbo II, Ekechukwu A. Evaluation of the analgesic activity of the methanolic stem bark extract of Dialium guineense (Wild). Annals of medical and health sciences research. 2011;1(1):55-62.

[23] Malairajan P, Gopalakrishnan G, Narasimhan S, Veni KJ. Analgesic activity of some Indian medicinal plants. Journal of ethnopharmacology. 2006 Jul 19;106(3):425-8.

[24] Pathak AK, Argal A. Analgesic activity of Calotropis gigantea flower. Fitoterapia. 2007 Jan 1;78(1):40-2.

[25] Goel B, Pathak N, Nim DK, Singh SK, Dixit RK, Chaurasia R. Clinical evaluation of analgesic activity of guduchi (Tinospora cordifolia) using animal model. https://doi.org/10.55544/jrasb.2.5.1

Journal of clinical and diagnostic research: JCDR. 2014 Aug;8(8):HC01.

[26] García P G, García S E, Martínez G I, Scior TR, Salvador JL, Martínez P MM, Río RE. Analgesic effect of leaf extract from Ageratina glabrata in the hot plate test. Revista Brasileira de Farmacognosia. 2011;21:928-35.

[27] Mohanvelu R, Madhuri AS, Ramabhimaiah S. Evaluation of analgesic activity of aqueous extract of Mangifera indica leaves in albino rats.

[28] de Fátima Arrigoni-Blank M, Dmitrieva EG, Franzotti EM, Antoniolli AR, Andrade MR, Marchioro M. Anti-inflammatory and analgesic activity of Peperomia pellucida (L.) HBK (Piperaceae). Journal of Ethnopharmacology. 2004 Apr 1;91(2-3):215-8.

[29] Panda BB, Gaur K, Kori ML, Tyagi LK, Nema RK, Sharma CS, Jain AK. Anti-inflammatory and analgesic activity of Jatropha gossypifolia in experimental animal models. Global Journal of Pharmacology. 2009;3(1):1-5.
[30] Maphosa V, Adedapo AA, Moyo B, Masika PJ. Anti-inflammatory and analgesic activities of the aqueous extract of Leonotis leonurus leaves in rats. African Journal of Biotechnology. 2012;11(26):6878-83.

[31] Gurung R, Adhikari S, Koirala N, Parajuli K. Extraction and evaluation of anti-inflammatory and analgesic activity of Mimosa rubicaulis in swiss albino rats. Anti-Infective Agents. 2021 Oct 1;19(5):30-7.

[32] Adedapo AA, Sofidiya MO, Maphosa V, Moyo B, Masika PJ, Afolayan AJ. Anti-inflammatory and analgesic activities of the aqueous extract of Cussonia paniculata stem Bark. Records of Natural Products. 2008;2(2):46.

[33] Farsam H, Amanlou M, Dehpour AR, Jahaniani F. Anti-inflammatory and analgesic activity of Biebersteinia multifida DC. root extract. Journal of Ethnopharmacology. 2000 Aug 1;71(3):443-7.

[34] Hossain AI, Faisal M, Rahman S, Jahan R, Rahmatullah M. A preliminary evaluation of antihyperglycemic and analgesic activity of Alternanthera sessilis aerial parts. BMC complementary and alternative medicine. 2014 Dec;14:1-5.

[35] Biswas NN, Saha S, Ali MK. Antioxidant, antimicrobial, cytotoxic and analgesic activities of ethanolic extract of Mentha arvensis L. Asian Pacific Journal of Tropical Biomedicine. 2014 Oct 1;4(10):792-7.

[36] Das BK, Al-Amin MM, Russel SM, Kabir S, Bhattacherjee R, Hannan JM. Phytochemical screening and evaluation of analgesic activity of Oroxylum indicum. Indian journal of pharmaceutical sciences. 2014 Nov;76(6):571.

[37] Komakech R, Kim YG, Matsabisa GM, Kang Y. Anti-inflammatory and analgesic potential of Tamarindus indica Linn.(Fabaceae): a narrative review. Integrative Medicine Research. 2019 Sep 1;8(3):181-6.

[38] Wahid S, Alqahtani A, Khan RA. Analgesic and anti-inflammatory effects and safety profile of Cucurbita maxima and Cucumis sativus seeds. Saudi Journal of Biological Sciences. 2021 Aug 1;28(8):4334-41. www.jrasb.com

https://doi.org/10.55544/jrasb.2.5.1

[39] Perianayagam JB, Sharma SK, Joseph A, Christina AJ. Evaluation of anti-pyretic and analgesic activity of Emblica officinalis Gaertn. Journal of ethnopharmacology. 2004 Nov 1;95(1):83-5.

[40] Sultana S, Nandi JK, Rahman S, Jahan R, Rahmatullah M. Preliminary antihyperglycemic and analgesic activity studies with Angiopteris evecta leaves in Swiss albino mice. World J Pharm Pharmaceut Sci. 2014 Jul 14;3(10):1-2.

[41] Benites J, Gutierrez E, López J, Rojas M, Rojo L, do Céu Costa M, Vinardell MP, Calderon PB. Evaluation of analgesic activities of tremetone derivatives isolated from the Chilean altiplano medicine Parastrephia lepidophylla. Natural Product Communications. 2012 May;7(5):1934578X1200700517.

[42] Sheikh H, Sikder S, Paul SK, Hasan AR, Rahaman M, Kundu SP. Hypoglycemic, anti-inflammatory and analgesic activity of Peperomia pellucida (L.) HBK (piperaceae). Int J Pharm Sci Res. 2013 Jan 1;4(1):458-63.

[43] Zulfiker AH, Rahman MM, Hossain MK, Hamid K, Mazumder ME, Rana MS. In vivo analgesic activity of ethanolic extracts of two medicinal plants-Scoparia dulcis L. and Ficus racemosa Linn. Biol Med. 2010 Oct;2(2):42-8.

[44] Delazar A, Asl BH, Mohammadi O, Afshar FH, Nahar L, Modarresi M, Nazemiyeh H, Sarker SD. Evaluation of analgesic activity of Eremostachys laciniata in mice. Journal of Natural Remedies. 2009 Jan 1;9(1):1-7.

[45] Mukherjee A, Chaliha M, Das S. Study of analgesic activity of ethanol extract of Phlogacanthus thyrsiflorus on experimental animal models. ||| Bangladesh Journal of Pharmacology|||. 2009 Dec 16;4(2):147-9.

[46] Carey MW, Rao NV, Kumar BR, Mohan GK. Antiinflammatory and analgesic activities of methanolic extract of Kigelia pinnata DC flower. Journal of Ethnopharmacology. 2010 Jul 6;130(1):179-82. [47] Shovo MA, Tona MR, Mouah J, Islam F, Chowdhury MH, Das T, Paul A, Ağagündüz D, Rahman MM, Emran TB, Capasso R. Computational and pharmacological studies on the antioxidant, thrombolytic, anti-inflammatory, and analgesic activity of molineria capitulata. Current Issues in Molecular Biology. 2021 Jun 22;43(2):434-56.

[48] Miladiyah I. Analgesic activity of ethanolic extract of Manihot esculenta Crantz leaves in mice. Universa medicina. 2011 Apr 23;30(1):3-10.

[49] Marasini DR, Pandey JI, Sharma LP, Paudel LA, Gyawali RO, Rokaya RK, Giri PM, Khadka RB, Aryal PR, Bhandari RA. Analgesic activity of bark and leaves of Ficus religiosa L. from Nepal. International Journal of Pharmacy and Pharmaceutical Sciences. 2020;12(7):32-5. [50] Hajare SW, Chandra S, Tandan SK, Sarma J, Lal J, Telang AG. Analgesic and antipyretic activities of Dalbergia sissoo leaves. Indian journal of pharmacology. 2000 Nov 1;32(6):357-60.

[51] Ahmed M, Islam MM, Hossain CF, Khan OF. A preliminary study on the analgesic activity of Grangea maderaspatana. Fitoterapia. 2001 Jun 1;72(5):553-4.

[52] Owoyele BV, Olaleye SB, Oke JM, Elegbe RA. Anti-inflammatory and analgesic activities of Nothospondias staudtii. Nigerian Journal of Physiological Sciences. 2004;19(1):102-5.

[53] Chatterjee A, Sen B, Das S, Chatterjee TK. Antiinflammatory and analgesic activity of methanolic xtract of medicinal plant Rhodiola rosea rhizomes. International Journal of Pharma Research & Review. 2015;4(2):1-8.

[54] Banerjee SA, Mukherjee AN, Chatterjee TK. Evaluation of analgesic activities of methanolic extract of medicinal plant Juniperus communis Linn. International Journal of Pharmacy and Pharmaceutical Sciences. 2012;4(5):547-50.

[55] Haque R, Ali MS, Saha A, Alimuzzaman M. Analgesic activity of methanolic extract of the leaf of Erythrina variegata. Dhaka University Journal of Pharmaceutical Sciences. 2006;5(1):77-9.